RAS and diabetic nephropathy

Dae Ryong Cha

Department of Internal Medicine, Korea University
The more, the better in CKD patients?
What do important studies suggest to us including On-Target Study?
What is the ideal dual blockade therapy in CKD?
AECI+ARB vs. ACEI(ARB)+aldosterone inhibitor vs. AECI(ARB)+DRI
What is the role of triple blockade?
Can we select the subgroup which expect the ideal combination?
Do we have the ideal primary outcome study?
Is there any difference between diabetic and non-diabetic patients?
Is there any difference based on the stage of diabetic nephropathy?
Potential difference in susceptibility to hypertensive renal damage

Annual transition rates through stages of diabetic nephropathy

- Normoalbuminuria (no nephropathy)
  - 2.0% (1.9–2.2%)
- Microalbuminuria
  - 2.8% (2.5–3.2%)
- Macroalbuminuria
  - 2.3% (1.5–3.0%)
- Elevated plasma creatinine or renal replacement therapy
  - 1.4% (1.3–1.5%)
  - 3.0% (2.6–3.4%)
  - 4.6% (3.6–5.7%)
  - 19.2% (14.0–24.4%)

(Kidney Int. 2003; 63: 225–2)
Interpretation of albuminuria results

DKD is often present if:
- Macroalbuminuria
- Microalbuminuria
  Presence of retinopathy
  in type 1 diabetes, duration at least 10 years

DKD may not be present if:
- Absence of diabetic retinopathy
- Rapid decline in GFR (>1 ml/min per month)
- Sudden onset of nephrotic syndrome
- Refractory hypertension
- Active urinary sediment (hematuria)
- Signs or symptoms of systemic disease
- >30% reduction in GFR after starting RAS blockade
<table>
<thead>
<tr>
<th>Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER (immunoassay)</td>
<td>• Sensitive</td>
<td>• Not specific for CKD</td>
<td>Initial response to antihypertensive treatment predicts long-term GFR progression in late nephropathy</td>
</tr>
<tr>
<td></td>
<td>• Specific for albumin</td>
<td>• High intra-individual variability</td>
<td></td>
</tr>
<tr>
<td>ACR (immunoassay)</td>
<td>Does not require timed collection</td>
<td>Needs gender specific reference range</td>
<td>Suitable for screening and assessing progression in same individual</td>
</tr>
<tr>
<td>HPLC</td>
<td>Similar sensitivity to immunoassay</td>
<td>Not specific for albumin</td>
<td>Overestimates normal range historically based on immunoassay</td>
</tr>
<tr>
<td>Proteomics</td>
<td>Documents full nephropathy phenotype</td>
<td>Complex to perform and interpret</td>
<td>Potential to assess progression</td>
</tr>
<tr>
<td>CTGF, TGF-β</td>
<td>More specific for CKD than AER</td>
<td>Expensive</td>
<td>Potential to assess progression</td>
</tr>
</tbody>
</table>
The systemic and local vicious cycles during progression of glomerular sclerosis: Urinary podocyte marker?

Whereas the classic vicious cycle is a phenomenon relevant only at late stages, the newly proposed vicious cycle operates from early stages of glomerular sclerosis. Whereas the classic theory explains the spread of lesion from glomerulus to distant glomerulus, the new theory explains podocyte to podocyte spread within the glomerulus. Thus, the classic vicious cycle is a systemic phenomenon, and contrastingly, the new vicious cycle is a local phenomenon.
<table>
<thead>
<tr>
<th></th>
<th>Subjects With Type 2 Diabetes Mellitus, % (95% Confidence Interval)</th>
<th>Population Estimate in Millions (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microalbuminuria (sampled n = 64)</td>
<td>45 (31-59)</td>
<td>0.6 (0.3-0.7)</td>
</tr>
<tr>
<td>Macroalbuminuria (sampled n = 47)</td>
<td>19 (10-28)</td>
<td>0.2 (0.1-0.3)</td>
</tr>
<tr>
<td>Retinopathy (sampled n = 58)</td>
<td>28 (21-36)</td>
<td>0.3 (0.2-0.4)</td>
</tr>
<tr>
<td><strong>No retinopathy or albuminuria</strong> (sampled n = 51)<strong>†</strong></td>
<td><strong>30 (21-39)</strong></td>
<td><strong>0.3 (0.2-0.4)</strong></td>
</tr>
</tbody>
</table>

*Includes angiotensin-converting enzyme users. Chronic renal insufficiency defined as glomerular filtration rate less than 60 mL/min per 1.73 m² body surface area calculated with the Modification of Diet in Renal Disease Study formula.²⁰

†Newly diagnosed type 2 diabetes mellitus defined by American Diabetes Association criteria.²³ Percentages are based on weighted data.

‡Albuminuria includes microalbuminuria or macroalbuminuria.
In the pooled analysis of studies in type 1 diabetes, there was a similar correlation between initial change in AER and overall rate of change in GFR in late nephropathy but no significant relationship in early nephropathy.

In type 2 diabetes there was also a significant correlation in late nephropathy, but no significant relationship was again demonstrated in studies of early nephropathy.

This pooled analysis indicates that initial changes in AER during antihypertensive therapy at CKD stages 1 and 2 do not predict long-term changes in GFR on an intention to treat basis.

This suggests that measurement of changes in GFR at CKD stages 1 and 2 may be of equal or greater clinical importance than measurement of changes in AER.
### Estimates of GFR as markers of progression of nephropathy

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine clearance</td>
<td>24-h urinary creatinine excretion allows check on completeness of urinary collection</td>
<td>Underestimates hyperfiltration, overestimates GFR at CKD stages 3 and 4</td>
<td>Underestimates GFR progression at CKD stages 3 and 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time consuming and training required for patients to perform accurate urine collections</td>
<td></td>
</tr>
<tr>
<td>Cockcroft-Gault</td>
<td>Requires weight for calculating eGFR</td>
<td>Underestimates GFR at CKD stages 1 and 2</td>
<td>Underestimates GFR progression at CKD stages 1 and 2</td>
</tr>
<tr>
<td>MDRD-4</td>
<td>• Suitable for automated reporting</td>
<td>• Influenced by body weight, muscle mass</td>
<td>Underestimates GFR progression at CKD stages 1 and 2</td>
</tr>
<tr>
<td></td>
<td>• Accurate at CKD stages 3 and 4</td>
<td>• Underestimates GFR at CKD stages 1 and 2</td>
<td></td>
</tr>
<tr>
<td>Cystatin C</td>
<td>• Independent of weight or muscle mass</td>
<td>• More expensive than creatinine</td>
<td>Accurate marker of GFR progression at CKD stages 1 and 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• False low GFR with inflammation, steroid therapy, hyperthyroidism</td>
<td></td>
</tr>
</tbody>
</table>
Treatment guidelines for patients with hypertension, diabetes and nephropathy

• Annually check for proteinuria, albuminuria, serum creatinine and calculate the estimated glomerular filtration rate (eGFR)

• In patients with proteinuria, albuminuria or reduced eGFR:
  – use angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) titrated to the maximum tolerated dose
  – intensify management of blood pressure (BP) to achieve target of <130/80 mmHg
  – monitor progression of nephropathy
  – advise limiting protein intake to 0.8 g/kg daily in patients with proteinuria
  – intensify other renal and cardiovascular protection measures (e.g. smoking cessation, aspirin therapy and lipid-lowering therapy)

(1. IDF 2005; 2. ADA 2006)
Evidence for use of antihypertensive agents (UKPDS data)

• Intensive control of BP using a target BP <150/85 mmHg in patients with diabetes significantly reduced* the risk of:
  – all diabetes complications by 24%
  – diabetes-related deaths by 32%
  – stroke by 44%
  – heart failure by 56%
  – microvascular complications by 37%

• Agents targeting the Renin System may offer additional renal protection beyond BP-lowering efficacy
  – the ARBs irbesartan and losartan are approved for the treatment of nephropathy in patients with Type 2 diabetes and hypertension

*Compared with less intensive control (target BP <180/105 mmHg)
Existing antihypertensives have limitations: Despite treatment with ARBs, the rate of decline in renal function is still higher than expected due to ageing.

Mean rate of decline in GFR (mL/min/1.73 m²/yr)

- Placebo (no Renin System suppression)
- Renin System suppression with ARB

(RENAAL Study vs. IDNT Study)

Rationale for a combination therapy with ACEI+ARB

- **Beneficial aspect**
  - Non-classical pathway produced Ang II is blocked by ARB
  - ACEI additionally increase kinins
  - Synergistically increase Ang I : vasodilator

- **Detrimental aspect**
  - Role of AT2 stimulation by ARB is blocked by ACEI
  - Simply provide higher degree of blockade of RAS
  - Rare fatal complication of combinations
Efficacy of ACEi and ARB combination

Effect size meta-analysis plot [random effects]

Cetinkaya, 24
Herbert, 23
Jacobsen, 16
Jacobsen, 17
Kim, 21
Kuriyama, 22
Rossing, 20
Rossing, 19
Tutuncu, 25
Jacobsen, 18

DL pooled weighted mean difference = -176.939729
(95% CI = -318.821824 to -35.057634)

(Diabetic Med, 2007)
Subgroup analyses

(a) Dose
- High Dose (n = 44) [17,19]
- Low Dose (n = 125) [16,18,20–25]

(b) Diabetes
- Type 1 (n = 61) [16–18]
- Type 2 (n = 101) [19–25]

(c) Baseline proteinuria (tertiles)*
- 4930 (3810 to 6050) mg (n = 40) [21,23,24]
- 2850 (988 to 4712) mg (n = 28) [18,22]
- 867 (107 to 1842) mg (n = 47) [16,20,25]

(d) Change in SBP (tertiles)*
- −7.7 (−8.3 to −7.0) mmHg (n = 61) [16–18]
- −3.0 (−7.2 to 1.2) mmHg (n = 37) [19,20]
- 2.0 (−0.8 to 4.8) mmHg (n = 19) [23,25]

Sensitivity analyses

Studies included
- All studies (n = 160) [16–25]
- Only R, DB (n = 120) [16–21]
- Only CO studies > 1 week (n = 140) [16–22,24]

WMD (95% CI), P-value
- Combination better
- ACEI monotherapy better

-500 mg/24 h 0 500 mg/24 h
Emerging new agents in diabetic nephropathy

- PPAR agonist
- Aldosterone antagonist
- PKC beta specific inhibitor (Ruboxistaurin)
- Pentoxifylline
- Sulodexide
- ACE2 activator
- DRI (direct renin inhibitor)
- Vitamin D analogue
Role of aldosterone and its inhibition in the progression of diabetic nephropathy
PAPY study: Primary Aldosteronism Prevalence in Italy

(Hypertension, 2006)
Effect of aldosterone on renal function in SHRSP rats

A

Plasma Aldosterone

B

U Protein Excretion

C

Glomerular Lesions

D

Vascular Lesions

(Hypertension, 1999)
Renal aldosterone synthesis is increased in diabetic kidney

(Exp Physiol, 2008)
GFR decline rate: aldosterone escaper 5ml/min/yr vs. non-escaper 2.4ml/min/yr

Correlation: plasma aldosterone level and decline in GFR ($r^2=0.19$, $p<0.001$)
Two fold increase in aldosterone level – decrease in GFR 1.5ml/min/yr

<table>
<thead>
<tr>
<th></th>
<th>Escape group ($n=26$)</th>
<th>Non-escape group ($n=37$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>2 months</td>
</tr>
<tr>
<td>P-aldosterone$^a$ (pg/ml)</td>
<td>88 (62–125)</td>
<td>57 (43–76)</td>
</tr>
<tr>
<td>P-renin$^a$ (µU/ml)</td>
<td>29 (20–40)</td>
<td>52 (36–75)</td>
</tr>
<tr>
<td>P-angiotensin II$^b$ (pmol/l)</td>
<td>10 (6–16)</td>
<td>16 (8–31)</td>
</tr>
<tr>
<td>S-potassium (mmol/l)</td>
<td>4.2±0.1</td>
<td>4.1±0.1</td>
</tr>
<tr>
<td>24-h systolic BP (mm Hg)</td>
<td>154±3</td>
<td>145±3$^f$</td>
</tr>
<tr>
<td>24-h diastolic BP (mmHg)</td>
<td>79±2</td>
<td>76±2$^f$</td>
</tr>
<tr>
<td>Albuminuriae (mg/24 h)</td>
<td>1347</td>
<td>970$^f$</td>
</tr>
<tr>
<td>U-potassium (mmol/24 h)</td>
<td>62±5</td>
<td>63±6</td>
</tr>
<tr>
<td>U-sodium (mmol/24 h)</td>
<td>145±12</td>
<td>132±12</td>
</tr>
<tr>
<td>U-K : Na ratio</td>
<td>0.46±0.04</td>
<td>0.53±0.07</td>
</tr>
</tbody>
</table>

(Diabetologia,2004)
Add on spironolactone upon maximal RAS inhibition in diabetic nephropathy

<table>
<thead>
<tr>
<th>Conventional antihypertensive treatment</th>
<th>Mean difference (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Placebo</td>
<td>+Spironolactone 25 mg</td>
<td></td>
</tr>
<tr>
<td><strong>Albuminuria (mg/24h)</strong></td>
<td>3718 (2970-4749)</td>
<td>2510 (1831-3441)</td>
</tr>
<tr>
<td><strong>Systolic blood pressure (mm Hg)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>146 (4)</td>
<td>142 (4)</td>
</tr>
<tr>
<td>24-hb</td>
<td>143 (3)</td>
<td>137 (3)</td>
</tr>
<tr>
<td>Day (7-23)b</td>
<td>147 (3)</td>
<td>140 (4)</td>
</tr>
<tr>
<td>Night (23-7)c</td>
<td>135 (3)</td>
<td>133 (4)</td>
</tr>
<tr>
<td><strong>Diastolic blood pressure (mm Hg)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>76 (2)</td>
<td>73 (2)</td>
</tr>
<tr>
<td>24-hb</td>
<td>81 (2)</td>
<td>77 (2)</td>
</tr>
<tr>
<td>Day (7-23)b</td>
<td>84 (2)</td>
<td>80 (2)</td>
</tr>
<tr>
<td>Night (23-7)c</td>
<td>74 (2)</td>
<td>73 (2)</td>
</tr>
<tr>
<td><strong>GFR (ml/min/1.73 m²)</strong></td>
<td>64 (2)</td>
<td>52 (2)</td>
</tr>
<tr>
<td>Fractional albumin clearance (θ_a) (×10^−5)a</td>
<td>1.79 (1.25−2.56)</td>
<td>1.24 (0.82 to 1.87)</td>
</tr>
<tr>
<td>Urinary sodium excretion (mmol/24h)</td>
<td>239 (36)</td>
<td>210 (19)</td>
</tr>
<tr>
<td>Urinary K/Na ratio</td>
<td>0.43 (0.05)</td>
<td>0.43 (0.04)</td>
</tr>
<tr>
<td>Bodyweight (kg)</td>
<td>93.8 (5.7)</td>
<td>92.6 (5.6)</td>
</tr>
<tr>
<td>Plasma renin activity (ng A/ml/h)a</td>
<td>8.9 (5.8−13.5)</td>
<td>16.1 (9.2−28.1)</td>
</tr>
<tr>
<td>Plasma aldosterone (pg/ml)a</td>
<td>38 (25−56)</td>
<td>68 (50−93)</td>
</tr>
<tr>
<td>Plasma creatinine (μmol/l)</td>
<td>141 (15)</td>
<td>149 (15)</td>
</tr>
<tr>
<td>Plasma potassium (mmol/l)</td>
<td>4.1 (0.1)</td>
<td>4.3 (0.1)</td>
</tr>
<tr>
<td>Plasma sodium (mmol/l)</td>
<td>139 (1)</td>
<td>138 (1)</td>
</tr>
<tr>
<td>Hemoglobin (mmol/l)</td>
<td>7.6 (0.2)</td>
<td>7.3 (0.2)</td>
</tr>
<tr>
<td>Hemoglobin A1c (%)</td>
<td>8.2 (0.3)</td>
<td>8.4 (0.3)</td>
</tr>
<tr>
<td>Plasma cholesterol (mmol/l)</td>
<td>4.7 (0.3)</td>
<td>4.6 (0.2)</td>
</tr>
<tr>
<td>Plasma LDL cholesterol (mmol/l)</td>
<td>2.3 (0.2)</td>
<td>2.3 (0.2)</td>
</tr>
<tr>
<td>Plasma HDL cholesterol (mmol/l)</td>
<td>1.5 (0.2)</td>
<td>1.5 (0.1)</td>
</tr>
</tbody>
</table>

(Kidney Int, 2006)
Effect of eplerenone combined with enalapril in type 2 diabetic nephropathy

Overall percentage change of UAER from baseline in type 2 diabetic patients

(J Am Soc Nephrol, 2006)
Predictor of spironolactone response in CKD patients

SBP
Basal aldosterone levels
Change in 1month GFR

(Kidney Int, 2006)
Overview of effect of adding aldosterone antagonist to RAS blockade in CKD: Meta-analysis results

(Am J Kidney Dis, 2008)
Double-blind, placebo-controlled trial in 81 patients with diabetes, hypertension, and albuminuria, who received lisinopril (80 mg once daily).

16.8% reduction: ACEi+ARB
34.0% reduction: ACEi+SPR

(J Am Soc Nephrol, 2009)
Aldosterone (Aldo) and Angiotensin II (Ang II) actions on Glomerular Insulin Metabolic Signaling
New aspect of aldosterone in diabetic nephropathy

- Activation of aldosterone (Up-regulation of aldosterone and MR)
  - Growth factors and cytokines (TGFβ, CTGF, Collagen, PAI-1)
  - Glomerular permselectivity (VEGF)
  - Inflammation and oxidative stress (NF-κB, MCP-1, MIF)
  - Insulin resistance
  - Systemic BP ↑

Progression of atherosclerosis, metabolic syndrome, hypertension

- Increased cardiovascular and renal disease
New aspects of the renin-angiotensin system: angiotensin-converting enzyme 2 - a potential target for treatment of hypertension and diabetic nephropathy
Proposed mechanism of ACE2 role in diabetic nephropathy
Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease

(Kidney Int, 2008)
Immunohistochemistry of ACE and ACE2 in Diabetic Kidney

(A) ACE in db/m
(B) ACE in db/db
(C) ACE2 in db/m
(D) ACE2 in db/db

(Exp Physiol, 2008)
ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice

(Kidney Int, 2007)
Development of increased urinary AERs and glomerular fibronectin expression in the diabetic mice

(Am J Pathol, 2007)
Human recombinant ACE2 reduces the progression of DN

(Diabetes, 2010)
Aliskiren controls the Renin-System at the rate-limiting Step

Aliskiren (Direct Renin Inhibitor)

Renin

Angiotensinogen

Ang I

ACE-Inhibitor

ACE

AT$_1$ Receptor

AT$_1$-Blocker

Ang II

AT$_1$ Receptor Feedback

Unlike ACEIs and ARBs, aliskiren reduces Ang I, Ang II and PRA

<table>
<thead>
<tr>
<th>Class</th>
<th>Renin Concentration</th>
<th>PRA</th>
<th>Ang I</th>
<th>Ang II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEI</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>ARB</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>DRI (Aliskiren)</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
The new renin angiotensin system?

(Pro)renin receptor

(Ptho)physiology

Angiotensinogen

Renin

Ang I

Ang II

AT₁ Receptor

Feedback loop

Direct renin inhibitor

ACE

ACEIs

ARBs

Organ Damage
(Pro) renin Receptor Binding

Modified from James L. Pool, JMCP, 2007 Oct 13(8): S21-S33
Aliskiren localizes in the kidney

Aliskiren can be detected 3 weeks after withdrawal

G = glomerulus
IA = interlobular artery
Cap = Capillaries

(J Clin Hypertens, 2006)
Aliskiren prevents albuminuria and inhibits renal inflammation in dTGR

* * *

* p<0.05 vs all other groups; † p<0.05 vs other groups

Untreated rats died by Week 8

Pilz B, et al. 2005
Elevated PRA may be associated with increased risk of myocardial infarction

- Existing treatments do not provide optimal suppression of the renin system
  - Increased PRA levels and additional cardiovascular risk factors increase risk of myocardial infarction (MI)

Risk factors defined as: smoking, cholesterol >6.3 mg/dL, or left ventricular hypertrophy

(Alderman et al. 1997)
Changes in UACR with aliskiren and placebo throughout the course of the study

Data are shown as change from baseline in geometric mean (95% CI)
Baseline was the week −2 value
UACR, urinary albumin:creatinine ratio

(NEJM, 2008)
Emerging concept: (Pro)renin receptor

Renin may cause organ damage independent of Ang II

Traditional thinking

Angiotensinogen → Renin → Ang I → Ang II → AT₁ receptor

Emerging concept

(Pro)renin binds to cell receptor

- Bound prorenin becomes activated
- ↑ catalytic activity of bound renin
- Activation of ERK 1/2
- Production of TGF-β
  - Growth responses
  - Fibrotic responses

Organ damage

Ang II-dependent

Ang II-independent

Feedback loop

(Guo C et al., J Clin Invest. 2001;107:703–715)
(Huang Y et al., Kidney Int. 2006;69:105–113)
Association of Activated Vitamin D Treatment and Mortality in Chronic Kidney Disease

(Log-rank P<.001)

Adjusted Incidence Rate Ratio

(Arch Intern Med, 2008)
Noncalcitropic physiologic effect of Vitamin D activation

Diet → Vitamin D → 25-hydroxylase → 25-OH-D

25-OH-D → Renal 1α-hydroxylase → 1,25-(OH)₂-D

1,25-(OH)₂-D → VDR (Parathyroid's, Bone, Gut) → PTH secretion, Resorption, Ca²⁺ Absorption

Extra-renal 1α-hydroxylase → 1,25-(OH)₂-D → VDR (Macrophage, Lymphocyte, Breast, Colon, Prostate, Kidney, Pancreas, Other organs) → Innate/Adaptive Immunity, Proliferation, Renin secretion, Insulin secretion, Others...
Renoprotective effects of combination therapy with renin–angiotensin system inhibitors and vitamin D receptor activators in chronic kidney disease
Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: Blockade of compensatory renin increase

(Proc Natl Acad Sci USA, 2008)
Relative Risk for ESRD in pts with 25(OH)D levels <15 ng/ml

(J Am Soc Nephrol, 2009)
Management Strategies in diabetic nephropathy

- **Early screening** and diagnosis of diabetic kidney disease
- **Careful interpretation of microalbuminuria** in type 2 DM
- Multi-faceted approach to care of DKD patients
- Controversial issue of ACEi and ARB combination
- Effect of **aldosterone antagonist**: selected patients
- Role of **PPAR agonist** in CVD mortality and renoprotection
- Effect of **direct renin inhibitor** in diabetic nephropathy
- **New marker** for early detection and progression in DKD
- Monitoring of progression of DKD: UAE and GFR
- Role of **vitamin D therapy, ACE2 agonist** in diabetic nephropathy
- **Combination therapy** with different RAS blockade: ideal group?