Defects in glucose utilization & GLP-1

Song, Dae-Kyu

Department of Physiology & Chronic Disease Research Center Keimyung University School of Medicine 2800 dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Korea

High glucose in normal person

High glucose in prediabetes

Brain in diabetes

Neurons rely on glucose metabolism for function and survival

[Biessels GJ et al, Eur J Pharmacol, 2004]

Glucagon-like peptide-1

Appetite $\downarrow \longrightarrow$ Lowers blood glucose levels in human DM \leftarrow GI motility \downarrow

GLP-1 synthesis

Enteroendocrine L-cell α-cell Brain Taste buds

Exendin-4 = GLP-1R agonsit

Gila monster lizard

GLP-1 receptor

Protein kinase A (PKA)

<u>cAMP-GEF (Epac)</u>

EGFR transactivation

GLP-1 potentiates triggering mechanism of GSIS

Amplication mechanisms of GLP-1 on GSIS

GLP-1 also potentiates glucokinase activity

 $\frac{\textbf{GLP-1 potentiates glucokinase activity}}{\textbf{in } \beta \textbf{-cell & neurons}}$

Effect of GLP-1, exendin-4, and exendin-9 on 2-deoxy-[³H]-glucose uptake and cellular ATP levels

Effect of GLP-1 on glucose-stimulated inhibition of K_{ATP} current, increase of [Ca²⁺]_c and insulin secretion

Effect of GLP-1 on GLUT2 and GK expression

Effect of GLP-1 on GK activity

Involvement of cAMP and Epac in the restorative effects of GLP-1 on 2-deoxyglucose uptake

Restorative effect of GLP-1 in Epac2-knockdown INS-1 cells

Restorative effect of GLP-1 in Rim2- or Rab3A-knockdown INS-1 cells

Proposed mechanism to explain the effects of GLP-1 on GK activity

Motor neuron cell line

Effect of GLP-1 on 2-deoxy-[³H]-glucose uptake, glucokinase (GK) activity and intracellular ATP levels against glucosamine (GlcN)

	Control	CLD 1 (100 mM)	$C_{10}N(10 \text{ mM})$	GlcN (10 mM)	
	Control		GIGN (10 IIIM)	GLP-1 (100 nM)	MP(1 mM)
Glucose uptake (%)	100.0 ± 2.3	103.6 ± 3.5	63.4 ± 2.6***	85.2 ± 2.9###	_
GK activity (%)	100.0 ± 4.0	104.0 ± 2.8	76.3 ± 6.4**	$103.7 \pm 4.0^{\#}$	_
Cellular ATP level (%)	100.0 ± 2.5	103.3 ± 4.2	78.6 ± 1.6***	92.0 ± 2.7 [#]	98.9 ± 2.8 ^{###}

	Control	GlcN — (10mM)	GlcN (10 mM)			
			GLP-1 (100 nM)	8-pCPT-2-Me-cAMP (50 μM)	SP-6-Bnz-cAMPS (50 μM)	
Control	100.0 ± 2.3	63.4 ± 2.6	85.2 ± 2.9***	82.2 ± 3.7***	61.7 ± 5.5	
Wortmannin (0.5 µM)	86.4 ± 5. 5	48.8 ± 4.8	77.3 ± 4.4*	-	_	
LY294002 (10 µM)	88.8 ± 6. 5	47.5 ± 3.5	77.8 ± 4.4**	_	-	
Η-89 (10 μΜ)	93.4 ± 4. 8	47.4 ± 3.0	78.6 ± 2.5**	_	-	
MDL (10 µM)	91.3 ± 3. 4	48.7 ± 4.7	55.7 ± 4.2	_	_	
ΡΡ1 (10 μΜ)	95.3 ± 5. 1	48.5 ± 4.4	78.8 ± 4.1**	_	_	
AG1478 (250 nM)	95.1 ± 5. 0	47.0 ± 4.7	75.8 ± 4.4*	_	-	

Neurosci Lett, 2010

muscle and adipocytes

hepatocytes

β-cell GLP-1R? Unknown signaling mechanism Long-term Tx \rightarrow GLUT2 expression, glycogen synthesis enzyme

GLP-1 or its analogues effects \rightarrow long-term effect only via non-GLP-1R

Greater glucose-metabolism dependency of β**-cells & neurons on action**

Conclusions with our observations and previous reports

• GLP-1 may insulin-independently potentiate glucose sensitivity in diabetic β -cells and neurons.

• Effect of GLP-1 on the other insulin-sensitive tissues may be due to ameliorated I/G ratio by GLP-1.

감사합니다