

Metabolic Roles of Endocannabinoid System in Alcoholic Fatty Liver

간질환 연구실, 의과학대학원 한국과학기술원(KAIST) Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea

Alcoholic Liver Disease

hepatic lipogenesis and decreased fatty acid oxidation in liver

• **Obesity** is also frequently associated with **fatty liver** and subsequent development of cirrhosis, and **high-fat diets** in rodents induce obesity, hepatic lipogenesis and steatosis

Endocannabinoid and steatosis

Cannabis

(Marihuana)

KAIST

- Endogenous cannabinoids (endocannabinoids) are lipid mediators that interact with cannabinoid receptors to produce effects similar to those of marihuana.
- To date, two types of main endocannabinoids and receptors (CBs) have been identified respectively;
 Anandamide and 2-arachidonoylglycerol (2-AG),
 CB1 receptor (brain, liver, peripheral tissues) and
 CB2 receptor (immune and hematopoietic cells)
- Endocannabinoids and **CB1 receptors** have been recently identified in the mouse fatty liver, where their expression is increased in response to a **high fat diet**.

Research article Related Commentary, page 1130

Endocannabinoid activation at hepatic CB₁ receptors stimulates fatty acid synthesis and contributes to diet-induced obesity

Douglas Osei-Hyiaman,¹ Michael DePetrillo,¹ Pál Pacher,¹ Jie Liu,¹ Svetlana Radaeva,¹ Sándor Bátkai,¹ Judith Harvey-White,¹ Ken Mackie,² László Offertáler,¹ Lei Wang,¹ and George Kunos¹

¹National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA. ²Departments of Physiology and Anesthesiology, University of Washington, Seattle, Washington, USA.

2005, JCI

- Mice deficient in CB1 receptors are **resistant** to high-fat-diet-induced **obesity and steatosis**, and in wild-type mice, both of these dietinduced effects are **reversed by** chronic treatment with a **CB1 receptor antagonist**
- The hepatic steatosis of genetically obese Zucker rats is also reversed by CB1 antagonist treatment and in wild-type mice, CB1 blockade attenuates the increase in hepatic lipogenesis induced by either a high-fat diet or treatment with a cannabinoid agonist

 Research article

 Hepatic CB₁ receptor is required for
development of diet-induced steatosis,
dyslipidemia, and insulin and
leptin resistance in mice

 Douglas Osei-Hyiaman,¹ Jie Liu,¹ Liang Zhou,¹ Grzegorz Godlewski,¹ Judith Harvey-White,¹
Won-il Jeong,¹ Sándor Bátkai,¹ Giovanni Marsicano,² Beat Lutz,³
2008, JCI

- Hepatic CB1^{-/-} mice had **less steatosis, hyperglycemia**, dyslipidemia, **insulin** and leptin **resistance** than wild-type mice
- These findings implicated endocannabinoids acting at hepatic CB1 receptors in diet-induced obesity, steatosis and insulin resistance, although the possible role of CB1 receptors at extrahepatic sites, such as the central nervous system and/or adipose tissue, could not be excluded

AMPK; AMP-activated protein kinase, CPT1; Carnitine palmitoyltransferase I,

SREPB1; Sterol response element-binding protein 1, FAS; fatty acid synthase

• Similar to high fat diet, chronic ethanol exposure can increase endocannabinoid levels, at least in the brain, suggesting that endocannabinoids may also be involved in ethanol-induced fatty liver.

KAIST

- We tested this hypothesis using a mouse model of alcoholic fatty liver
- Through the use of wild-type mice as well as mice with either global or hepatocyte-specific genetic ablation of CB1 receptors, we were able to provide a definitive answer as to the cellular target of endocannabinoids
- Our findings also revealed that a specific endocannabinoid, 2-AG, generated in a unique cellular source, the hepatic stellate cell, is the most likely mediator involved

Chronic alcohol drinking induces CB1 receptor expression and endocannabinoid levels in the liver

Graduate School of Medical Science and Engineering KAIST/GSMSE

KAIST

Mice with global or hepatocyte-specific knockout of CB1 receptors are resistant to ethanol-induced steatosis

KAIST

Ethanol Upregulates Hepatic Lipogenic Gene Expression and Inhibits Fatty Acid Oxidation via Activation of Hepatic CB1 Receptors

KAIST

A)		Whole liver, control diet				Whole liver, EtOH diet		
	W	T	CB1-/-	LCB1-/-	WT	CB1 -/-	LCB1-/-	
рАМ	PK		-		主要主			
AM	PK —	-		~~~	-			
ß-a	ctin mar		_		-	-		
	C)				D)			
cultures	ŕ	Hep/HSC co-cultures			,	Wild type honotogytes		
LCB1-/-	Нер	WT	WT	LCB1-/-		co-cultu	red with	
EtOH	HSC	Pair-fed	EtOH	EtOH	HSC	Pair-fed	EtOH	
			And And		SREBP1	teres show No.		
	SNEDP1 FAS				FAS	all the set	fine and the	
	β-actin				β-actin			

Increased hepatic AMPK phosphorylation in the absence of CB1 receptors in ethanol-treated mice

KAIST

의과학대학원

Scheme of paracrine regulation of hepatic lipogenesis via hepatic stellate cell-derived endocannabinoids acting on CB1 receptors in hepatocytes

STAT1 Inhibits Liver Fibrosis in Mice by Inhibiting **Stellate Cell Proliferation and Stimulating**

Graduate School of Medical Science and Engineering KAIST/GSMSE

KAIST

Immunotherapy of alcohol-mediated hepatic fatty liver (steatosis) via NK cell killing against HSCs

✤ Collaborator

Mount Sinai Hospital Keck school medicine Gunma University Hospital Yonsei School of Medicine NIAAA/NIH New York/USA /USC/LA/USA Gunma prefecture/Japan Seoul/Korea Bethesda, USA Dr. Young-Han Paik Dr. Bin Gao Dr. Scott L. Friedman Dr. Hide Tsukamoto Dr. Norio Horiguchi Dr. Ja-Kyung Kim