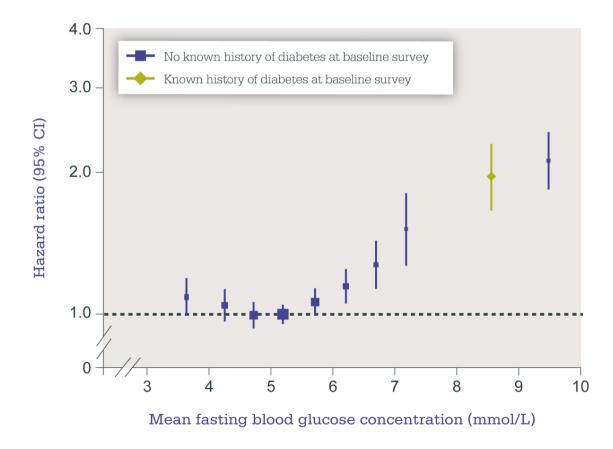

Can we reduce CV complications by targeting normal glucose levels?

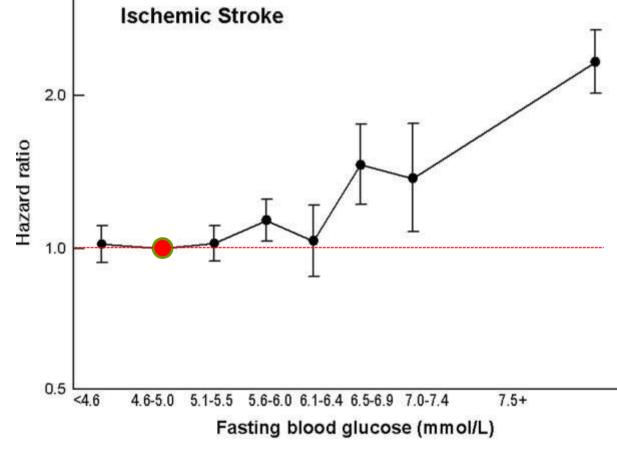
김대중 아주의대 내분비대사내과

- 1. Background: Diabetes and CV risk
- Rational for targeting normal glucose level (Diabetic complications)
- 3. Rational for "why insulin?" to target normal glucose level
- Outcomes trials evaluating individual treatments for patients with dysglycemia
- 5. Conclusion


Background: Diabetes and CV risk

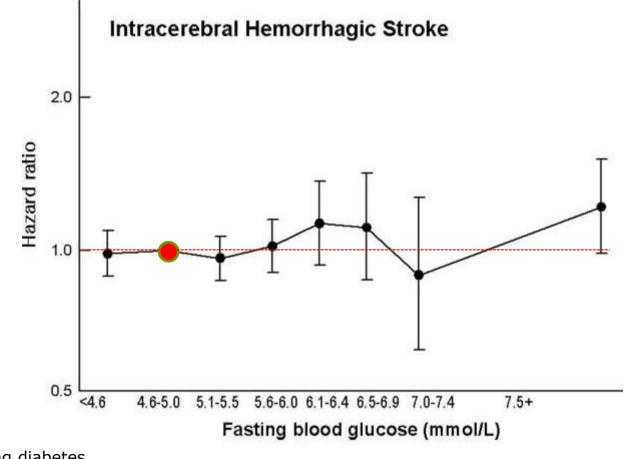
Diabetes and Cardiovascular diseases

High FPG correlates with high risk of coronary heart disease even in non-diabetic patients


Meta-analysis of 102 prospective studies ~700,000 participants without prior cardiovascular disease

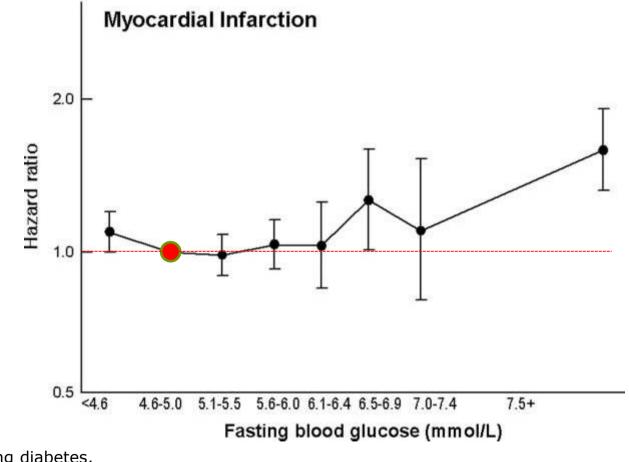
HR in figure adj. for age, smoking, BMI, SBP

The Emerging Risk Factors Collaboration. *Lancet* 2010;375:2215–22.


Fasting Blood Glucose and Risk of Ischemic Stroke; Korean men

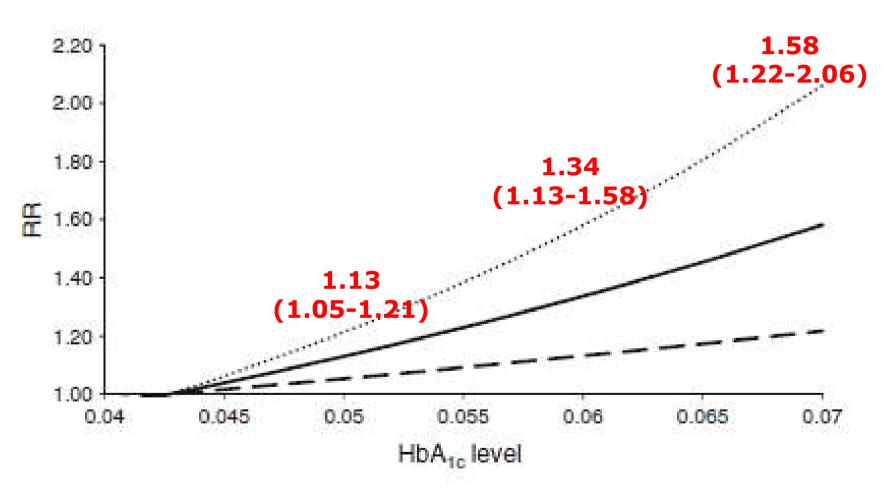
*after excluding diabetes, *adjusted for age, height, BP, TC, BMI, smoking, alcohol, regular exercise, salary, and area of residence

Circulation 2009;119;812-819


Fasting Blood Glucose and Risk of Hemorrhagic Stroke; Korean men

*after excluding diabetes, *adjusted for age, height, BP, TC, BMI, smoking, alcohol, regular exercise, salary, and area of residence

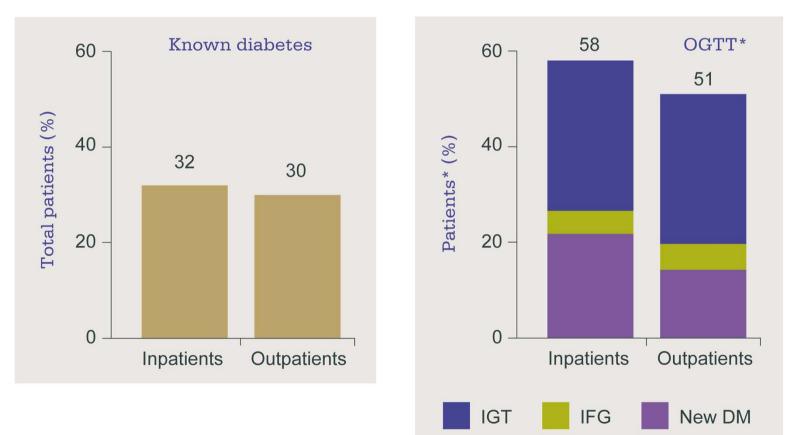
Circulation 2009;119;812-819


Fasting Blood Glucose and Risk of Myocardial Infarction; Korean men

*after excluding diabetes, *adjusted for age, height, BP, TC, BMI, smoking, alcohol, regular exercise, salary, and area of residence

Circulation 2009;119;812-819

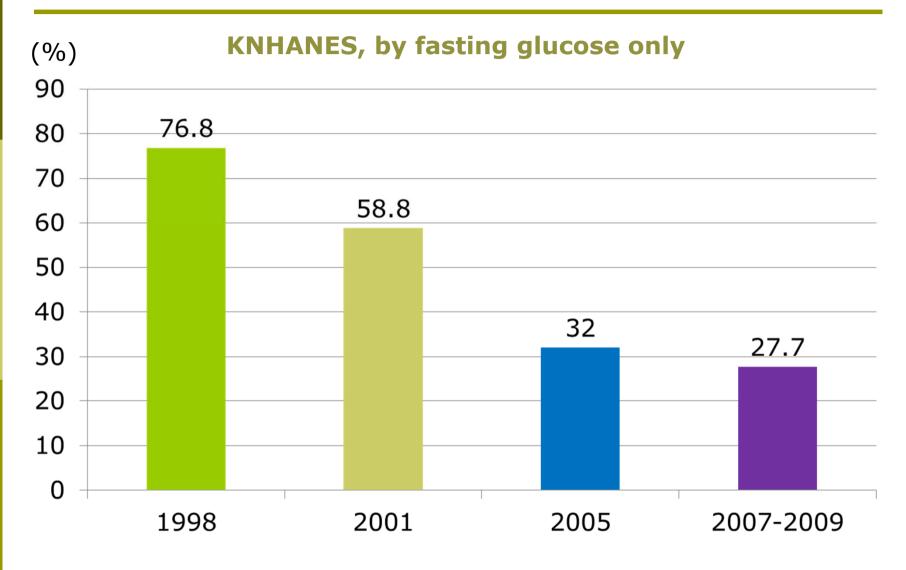
HbA1C and Cardiovascular Death in non-DM



Reference : 0.0427 (4.27%) Results for total CV events were similar

Diabetologia. 2011 Feb

Abnormal glucose metabolism in patients with CAD

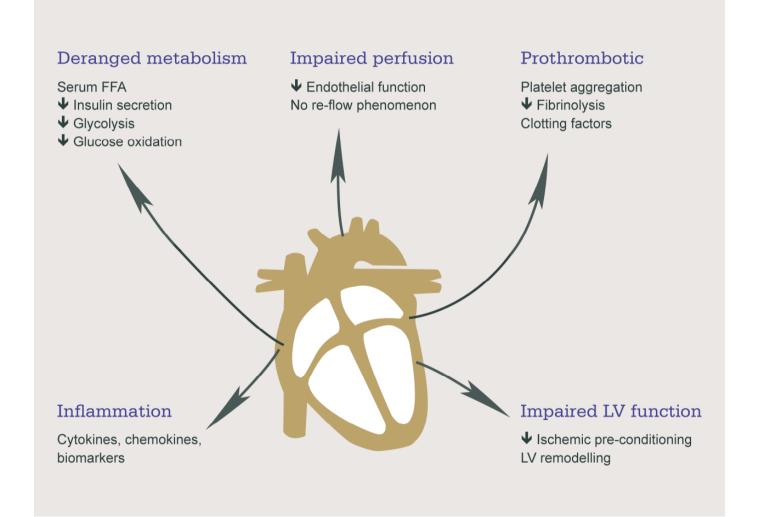

n=2107 inpatients with acute CAD; n=2854 outpatients with stable CAD

*n = 1920 without known diabetes CAD, coronary artery disease. IGT, impaired glucose tolerance. IFG, impaired fasting glucose. OGTT, oral glucose tolerance test.

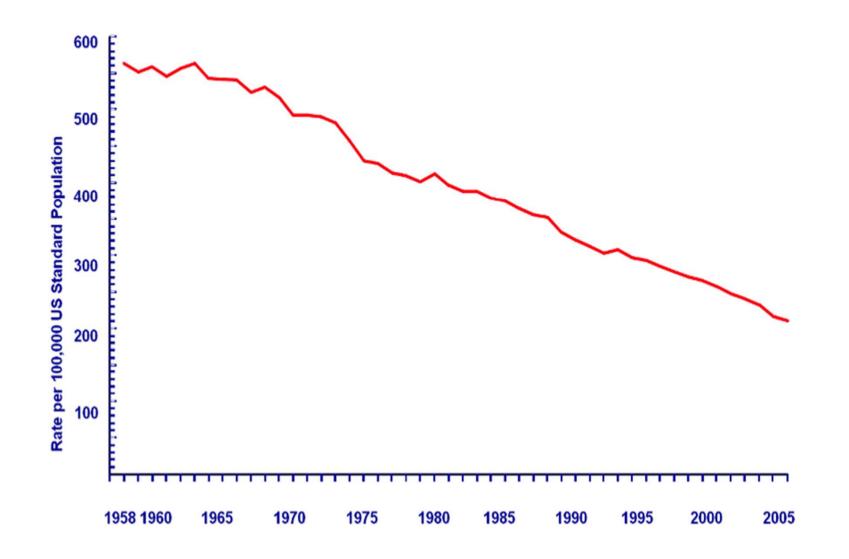
Reproduced with permission from Elsevier

Undiagnosed diabetes in Korea

Diabetes Metab J 2011;35:303-308

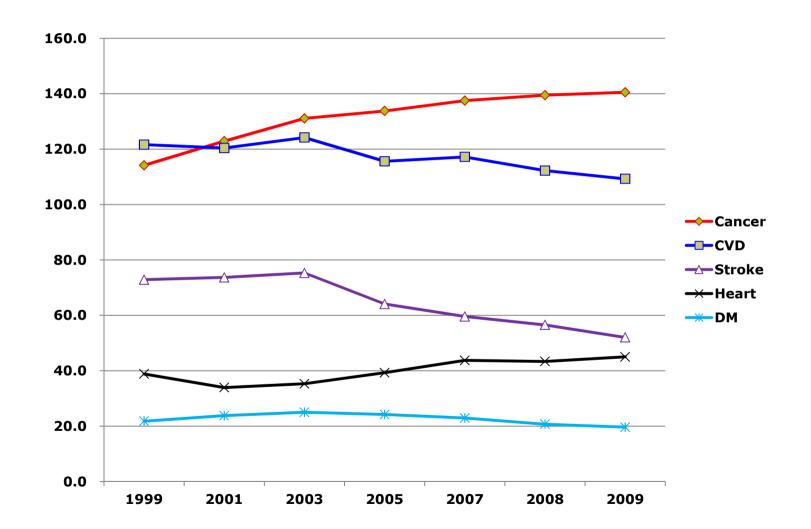

Prevalence of IGT and T2D in non-diabetic men with CAD referred for coronary angiography

CAD by angiography N=363	None n=61	1 VD n=113	2 VD n=116	3 VD n=73
NGT	36 (59)	65 (57.9)	43 (37.1)	29 (39.7)
IGT	22 (36)	35 (30.9)	55 (47.1)* [†]	19 (26.0)*
Diabetes	3 (4.9)	13 (11.5)	18 (15.5)	23 (34)*†

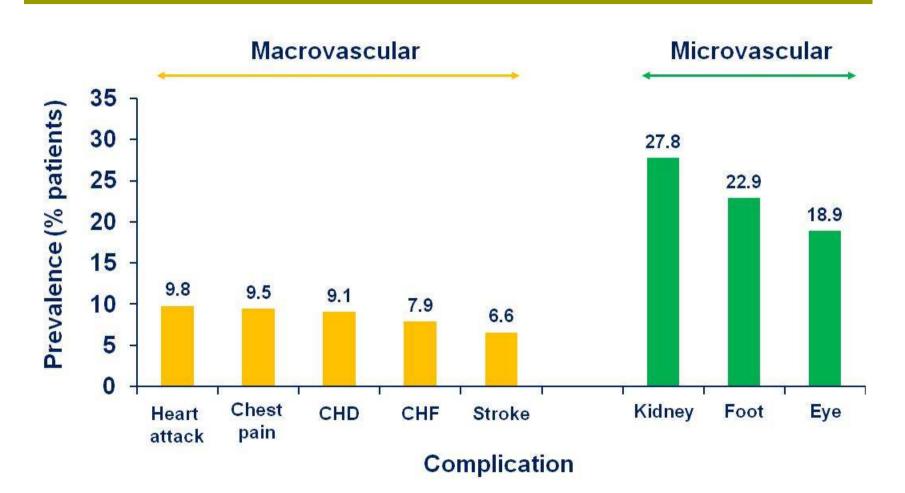

Data are n(%). *p<0.05 group 0 vs. respective value in groups 1, 2 ,and 3. †p<0.05 group 1 vs. respective value in groups 2 and 3. 363 men submitted to OGTT and glucose disorders defined by WHO.

CAD: coronary artery disease. IGT: impaired glucose tolerance. NGT: normal glucose tolerance. OGTT: oral glucose tolerance test. VD: vessel disease.

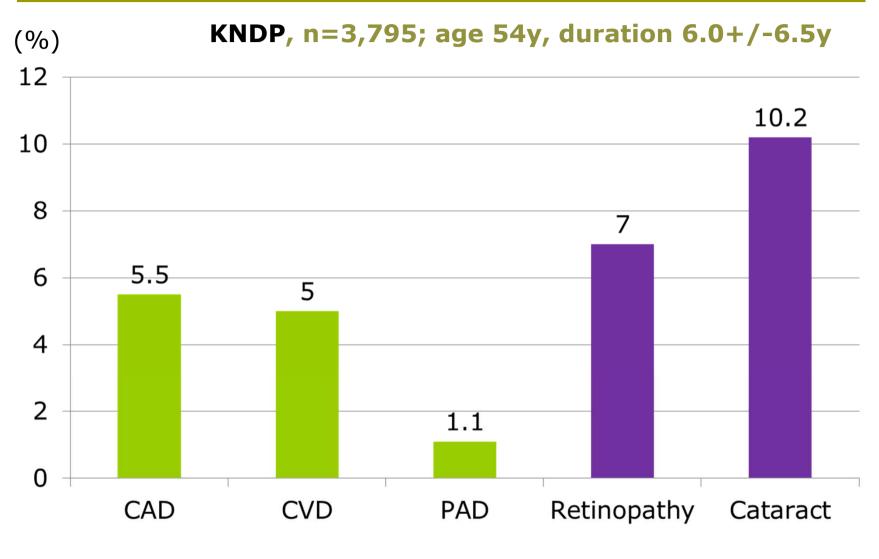
Cardiovascular consequences of glucose homeostasis abnormalities



Age-Adjusted Death Rates for CVD USA, 1958-2005

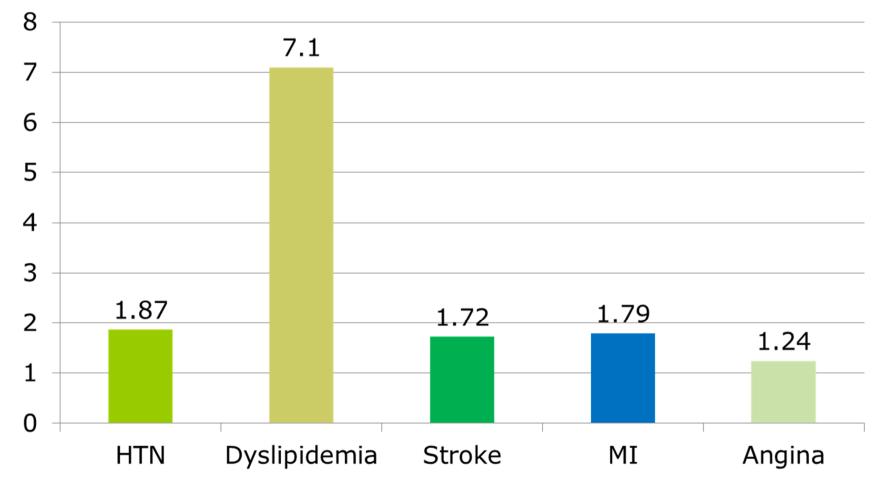

Source: CDC/NCHS, National Vital Statistics System, Mortality.

Cause of Death in Korea

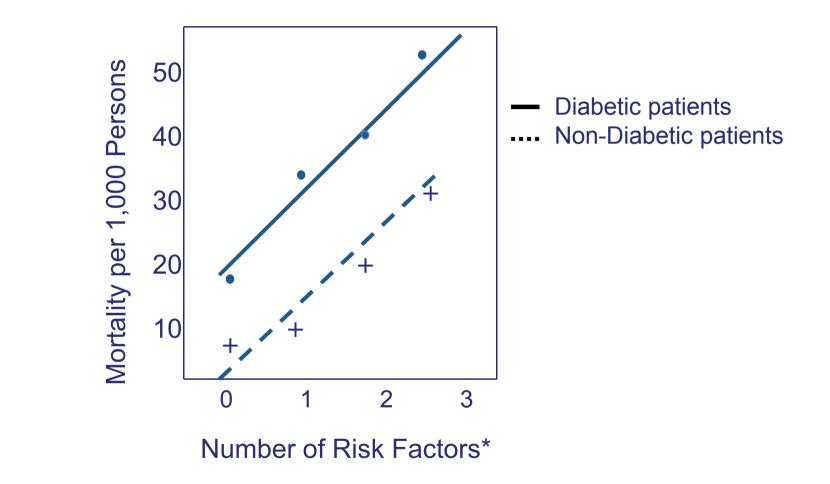

통계청 URL:http://www.nso.go.kr

Macrovascular and microvascular complications occur frequently in people with diabetes

CHD = Coronary heart disease CHF = Congestive heart failure


Diabetes related complications in Korea

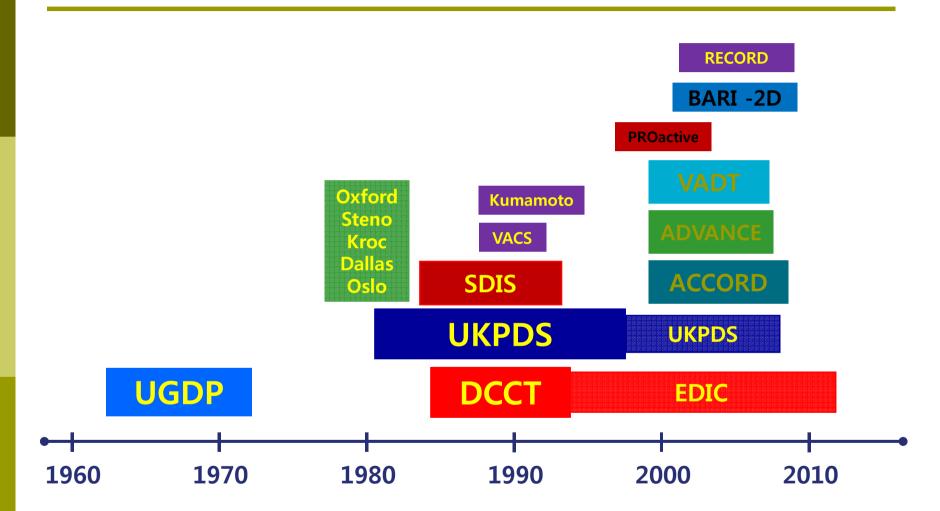
Diabetes Metab J 2011;35:504-512


Standardized prevalence ratio (SPR)

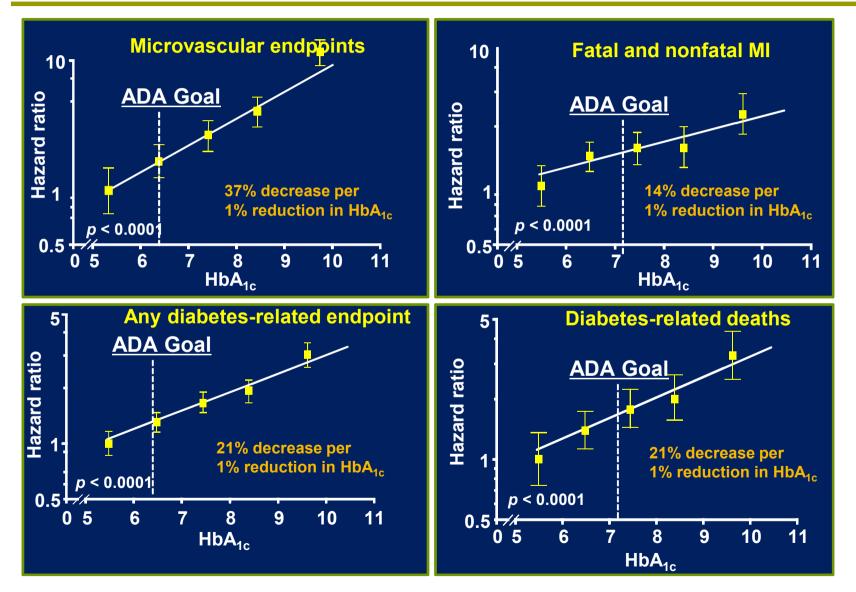
KNDP vs. KNHANES 2005

Diabetes Metab J 2011;35:504-512

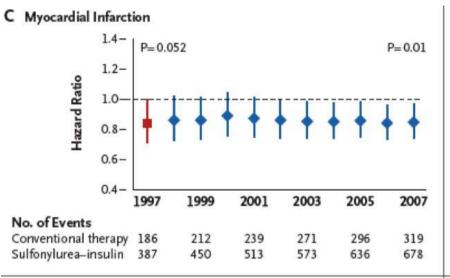
Impact of Diabetes on Cardiovascular Mortality

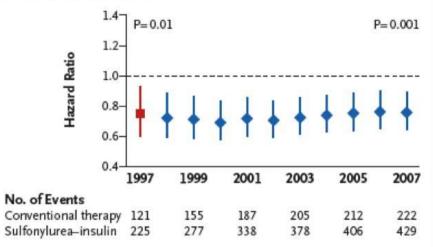


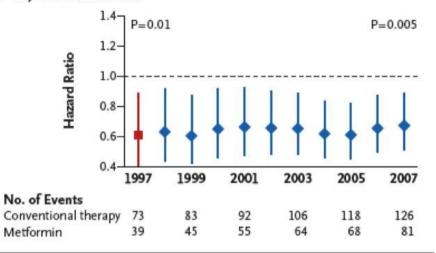
* Risk factors analyzed were smoking, dyslipidemia, and hypertension


ADA Diabetes Care 1989;12:573-9.

Rational for targeting normal glucose level -Diabetic complications-


Landmark intervention trials in DM

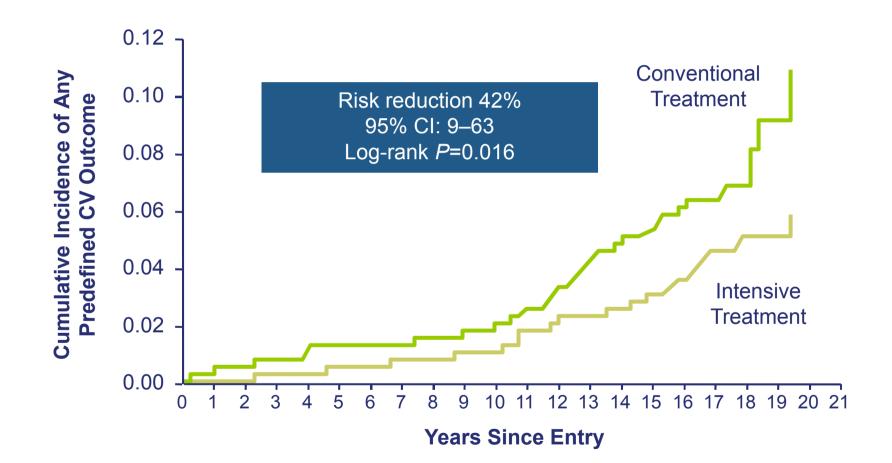

UKPDS epidemiological data: HbA_{1c} and risk of complications in T2DM


10-year follow-up of UKPDS

E Microvascular Disease

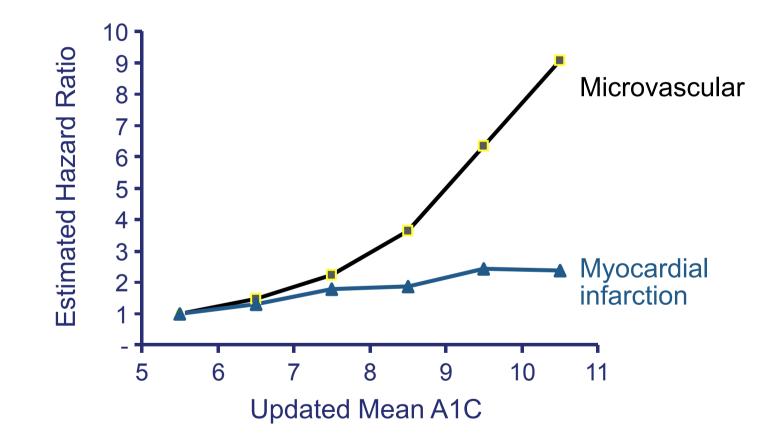
F Microvascular Disease

Holmann RR et al. NEJM 2009;359:1577-1589

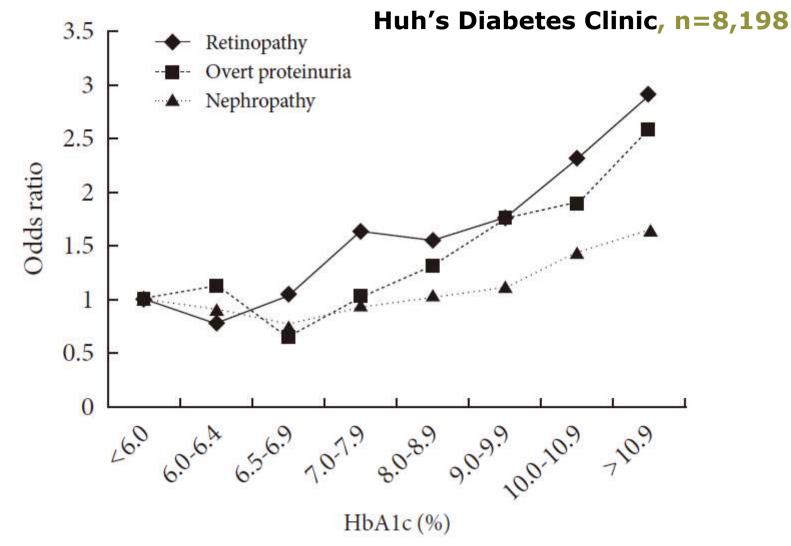

Legacy effect of early intensive intervention on blood glucose

After median 8.5 years post-trial follow-up in UKPDS

Aggregate endpoint		1997*	2007
Any diabetes related endpoint	RRR:	12%	9%
	p:	0.029	0.040
Microvascular disease	RRR:	25%	24%
	p:	0.0099	0.001
Myocardial infarction	RRR:	16%	15%
	p:	0.052	0.014
All-cause mortality	RRR:	6%	13%
	p:	0.44	0.007

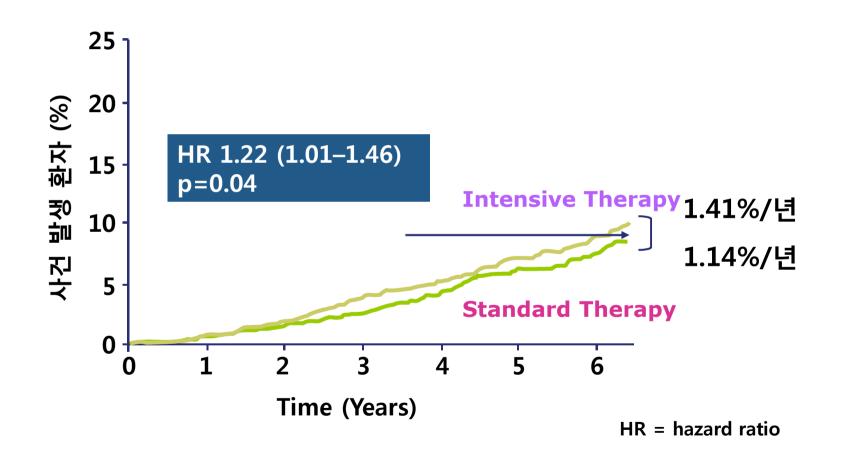

RRR = Relative Risk Reduction, p = Log rank

DCCT/EDIC: Cumulative Incidence of the First of Any of the Predefined CVD Outcomes

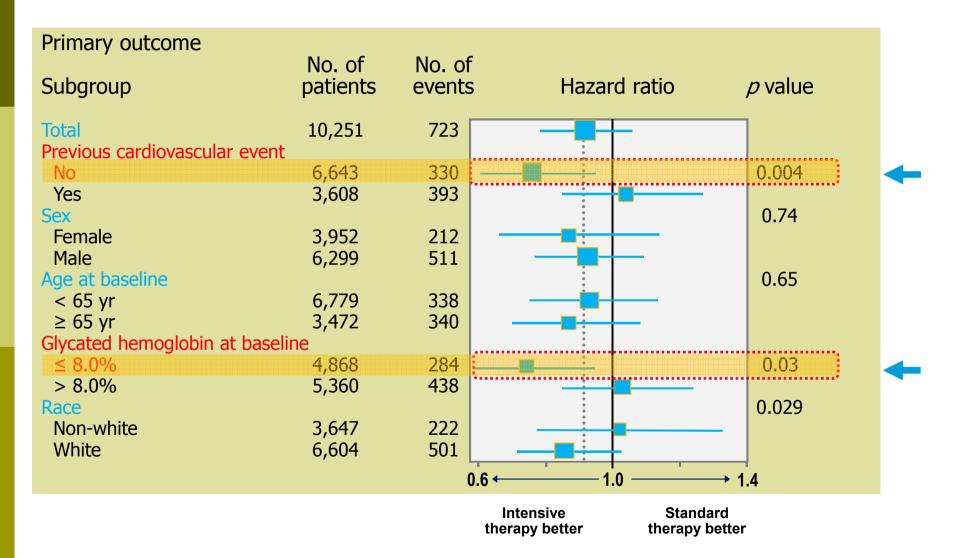


Nathan DM et al. N Engl J Med 2005;353(25);2643-53.

UKPDS: A1C As A Predictor of Micro- and Macrovascular Disease



Glycemic control and Complications



Diabetes Metab J 2011;35:571-577

ACCORD: All-cause mortality

ACCORD: CVD outcomes

ACCORD. N Engl J Med 2008; 358:2545-59.

Meta-analysis from the CONTROL Group: Intensive glucose control and macrovascular outcomes in T2DM (1/3)

		of events ent rate, %)		1		
Trials	More intensive	Less intensive	∆HbA _{1c} (%)	Favors more intensive	Favors less intensive	Hazard Ratio (95% CI)
All-cause mortality	7					
ACCORD	257 (1.41)	203 (1.14)	-1.01			1.22 (1.01–1.46)
ADVANCE	498 (1.86)	533 (1.99)	-0.72		_	0.93 (0.83–1.06)
UKPDS	123 (0.13)	53 (0.25)	-0.66			0.96 (0.70–1.33)
VADT	102 (2.22)	95 (2.06)	-1.16		<u> </u>	1.07 (0.81–1.42)
Overall	980	884	-0.88		>	1.04 (0.90–1.20) (Q=5.71, p=0.13, l²=47.5%)
Cardiovascular dea	ath					
ACCORD	135 (0.79)	94 (0.56)	-1.01			1.35 (1.04–1.76)
ADVANCE	253 (0.95)	289 (1.08)	-0.72			0.88 (0.74–1.04)
UKPDS	71 (0.53)	29 (0.52)	-0.66			1.02 (0.66–1.57)
VADT	38 (0.83)	29 (0.63)	-1.16		- -	1.32 (0.81–2.14)
Overall	497	441	-0.88		>	1.10 (0.84–1.42) (Q=8.61, p=0.04, l²=65.1%)
Non-cardiovascula	r death					
ACCORD	115 (0.63)	98 (0.55)	-1.01			1.14 (0.87–1.49)
ADVANCE	245 (0.92)	244 (0.91)	-0.72		_	1.00 (0.84–1.20)
UKPDS	52 (0.39)	24 (0.43)	-0.66			0.90 (0.55–1.46)
VADT	64 (1.40)	66 (1.43)	-1.16			0.97 (0.69–1.36)
Overall	476	432	-0.88	\frown	>	1.02 (0.89–1.18) (Q=0.99, p=0.80, l²=0.0%)
				0.5 1.0	2.0	
				Hazard ratio	(95% CI)	

Reproduced with permission from Springer Science+Business Media

Turnbull FM, et al. Diabetologia 2009;52:2288-98.

Meta-analysis from the CONTROL Group: Intensive glucose control and macrovascular outcomes in T2DM (2/3)

	Number of events (annual event rate, %)			F	Faura	
Trials	More intensive	Less intensive	∆HbA _{1c} (%)	Favors more intensive	Favors less intensive	Hazard Ratio (95% CI)
Major care	diovascular	events				
ACCORD	352 (2.11)	371 (2.29)	- 1.01		0.	90 (0.78–1.04)
ADVANCE	557 (2.15)	590 (2.28)	-0.72	_	0.	94 (0.84–1.06)
UKPDS	169 (1.30)	87 (1.60)	-0.66		0.	80 (0.62–1.04)
VADT	116 (2.68)	128 (2.98)	- 1.16		0.	90 (0.70–1.16)
Overall	1194	1176	-0.88	\diamond		91 (0.84–0.99) 2, p=0.72, l²=0.0%)
Stroke				1		
ACCORD	73 (0.43)	70 (0.42)	- 1.01		L 1.	00 (0.72–1.39)
ADVANCE	238 (0.91)	246 (0.94)	-0.72		— 0.	97 (0.81–1.16)
UKPDS	35 (0.26)	17 (0.31)	-0.66			85 (0.48–1.52)
VADT	32 (0.71)	37 (0.82)	-1.16 -			87 (0.54–1.39)
Overall	378	370	-0.88	\langle		96 (0.83–1.10) 0, p=0.94, l²=0.0%)
			0.2	1.(2.0
				Hazard ratio	o (95% CI)	

Reproduced with permission from Springer Science+Business Media

Turnbull FM, et al. Diabetologia 2009;52:2288-98.

Meta-analysis from the CONTROL Group: Intensive glucose control and macrovascular outcomes in T2DM (3/3)

		of events ent rate, %)		Fouriero	Fours
Trials	More intensive	Less intensive	∆HbA _{1c} (%)	Favors more intensive	Favors less Hazard Ratio intensive (95% CI)
Myocardia	al infarction				
ACCORD	198 (1.18)	245 (1.51)	-1.01		0.77 (0.64–0.93)
ADVANCE	310 (1.18)	337 (1.28)	-0.72		0.92 (0.79–1.07)
UKPDS	150 (1.20)	76 (1.40)	-0.66		0.81 (0.62–1.07)
VADT	72 (1.65)	87 (1.99)	-1.16		0.83 (0.61–1.13)
Overall	730	745	-0.88	\diamond	0.85 (0.76–0.94) (Q=2.25, p=0.52, l²=0.0%)
Hospitaliz	ed/fatal hea	art failure			
ACCORD	152 (0.90)	124 (0.75)	-1.01		1.18 (0.93–1.49)
ADVANCE	220 (0.83)	231 (0.88)	-0.72	_	0.95 (0.79–1.14)
UKPDS	8 (0.06)	6 (0.11)	-0.66 🔫		0.55 (0.19–1.60)
VADT	79 (1.80)	85 (1.94)	-1.16		0.92 (0.68–1.25)
Overall	459	446	-0.88	<	1.00 (0.86–1.16) (Q=3.59, p=0.31, l²=16.4%)
			0.2	1.	0 2.0
				Hazard rati	o (95% CI)

Reproduced with permission from Springer Science+Business Media

Turnbull FM, et al. Diabetologia 2009;52:2288-98.

Glycemic control and CVD in Diabetes

Study	Microvascular		CVD		Mortality	
UKPDS	\downarrow	\downarrow	\leftrightarrow	\downarrow	\leftrightarrow	\downarrow
DCCT/ EDIC	\downarrow	\downarrow	\leftrightarrow	\downarrow	\leftrightarrow	\leftrightarrow
ACCORD	\downarrow		\leftrightarrow		\uparrow	
ADVANCE	\downarrow		\leftrightarrow		\leftrightarrow	
VADT	\downarrow		\leftrightarrow		\leftrightarrow	
Initial Trial Long-term F/U						

혈당조절에 의한 심혈관 질환 위험 감소를 입증하기 어려운 이유는?

- (혈당 조절을 하면서) 심혈관 질환의 절대적 위험이 줄어들므로, 따라서
 - 많은 수의 피험자가 필요
 - 장기간 추적관찰해야 하며, 치료법 변경에 대해 추적관찰 해야 함
- □ 당뇨병이 너무 진전되었을 때 혈당 조절 시작

Rational for "why insulin?" to target normal glucose level

Research on the impact of insulin use on MI (ROLE-MI study)

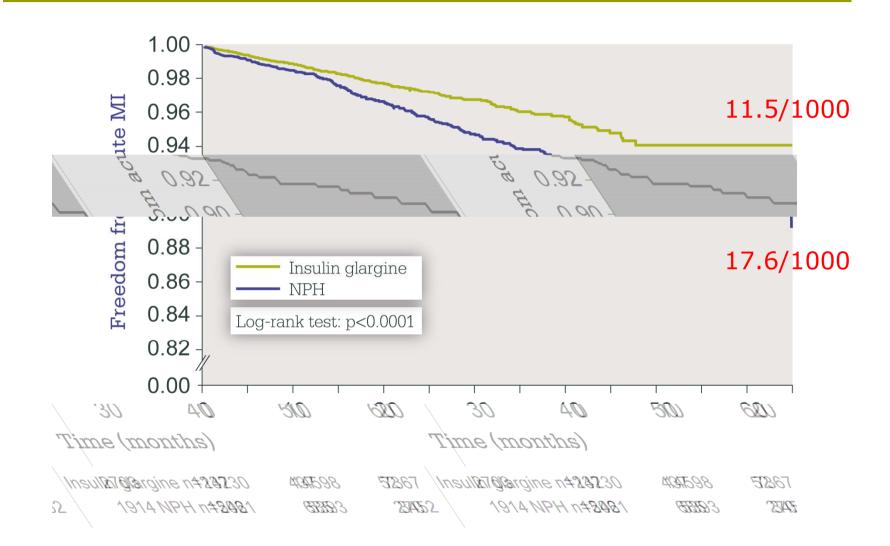
Objective

To determine whether the rate of subsequent MI differs in patients with T2DM newly initiated on insulin glargine or NPH

Data source

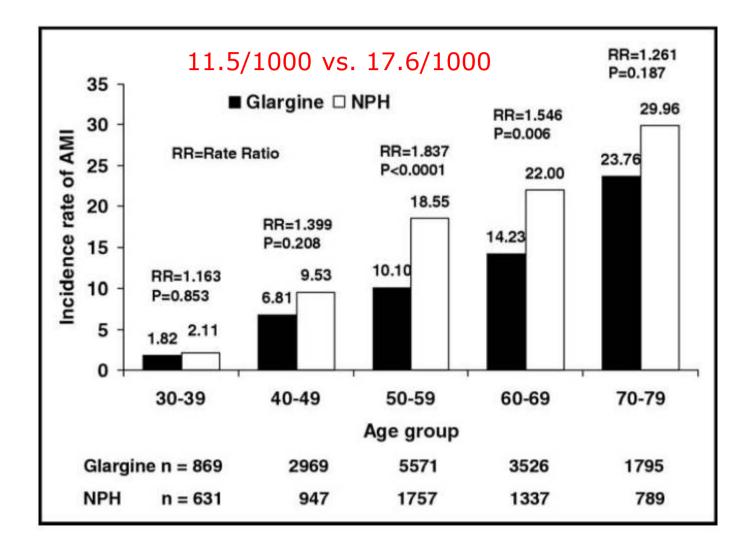
 Integrated Health Care Information System (IHCIS) national managed care database

Patients


- Newly initiated on insulin glargine (n = 14,730) or NPH (n = 5,461) between March 2001 and February 2005
- **•** Failed OADs (on OADs during 6 months prior to insulin initiation)
- Had continuous health plan enrollment for at least 6 months prior to, and 12 months following, insulin initiation
- **•** Followed for up to 5 years with an average follow-up of 2 years

Research on the impact of insulin use on MI (ROLE-MI study)

	Glargine (n=14,730)	NPH (n=5,461)	р
Age	56.2	55.8	0.025
Women	44.2%	50.3%	< 0.001
Hypertension	56.7%	52.3%	< 0.001
Hyperlipidemia	51.0%	41.7%	<0.001
MI	3.4%	4.5%	0.001
Stroke	5.7%	6.5%	0.039
HbA1C	9.28%	8.91%	<0.0001
Creatinine	1.07	1.11	NS
LDLC	102	104	NS
TG	240	221	NS
HDLC	45.7	46.1	NS


Rhoads GG, et al. Am J Cardiol 2009;104:910-6.

MI risk with insulin glargine vs NPH: Retrospective US database analysis

Rhoads GG, et al. Am J Cardiol 2009;104:910-6.

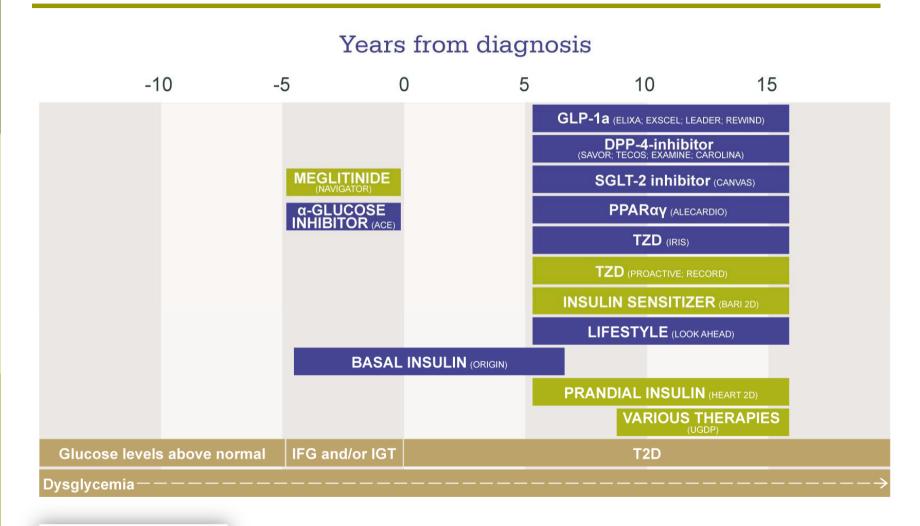
MI risk with insulin glargine vs NPH: Retrospective US database analysis

Rhoads GG, et al. Am J Cardiol 2009;104:910-6.

Why Glargine was better than NPH?

Glycemic control

HbA1C : Glargine 8.15% vs. NPH 8.11%

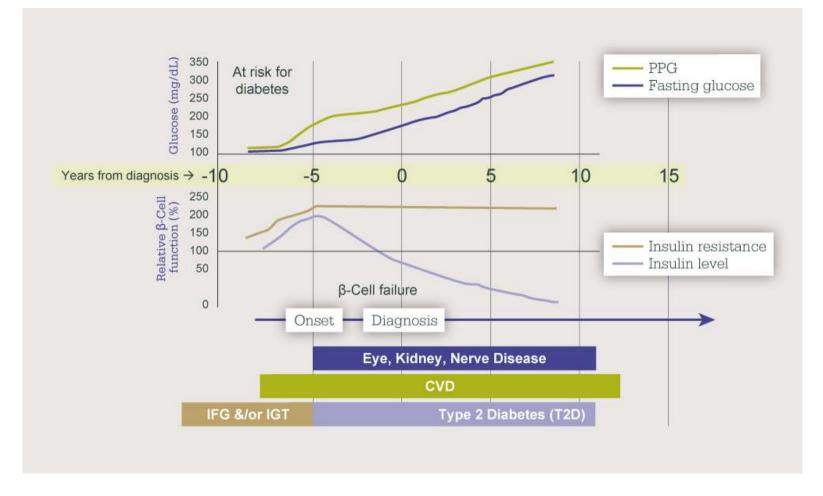

Hypoglycemia

 Greater rate of medical claims for hypoglycemia in NPH insulin than Glargine

Effects on IGF axis and oxidative stress

- NPH was associated with lower IGF-1 levels than insulin glargine
- Low IGF-1 was predictor of IHD
- Exogenous IGF-1 decrease inflammation, oxidative stress and atherosclerosis

Outcomes trials evaluating individual treatments for patients with dysglycemia

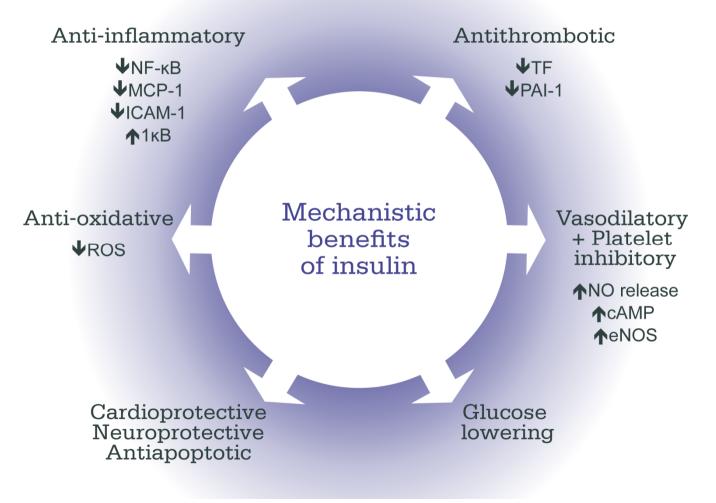


Completed trials Ongoing trials

The trials are shown in relation to the eligibility criteria, with respect to diabetes duration at randomization.

Adapted from Gerstein, HC. Nat Rev Endocrinol 2009;5:270-275.

In individuals with dysglycemia, there is an early relative deficiency in insulin, even at early stage

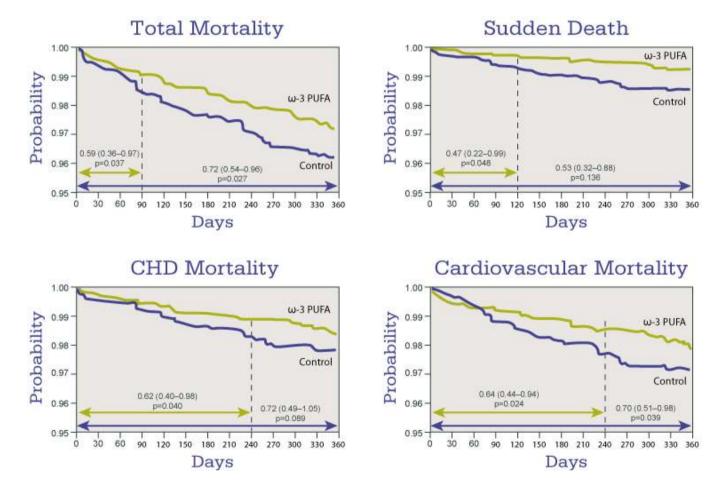

Reproduced with permission from Elsevier

Bergenstal R et al. In: DeGroot L, Jameson J, eds. *Endocrinology*. 4th ed. Philadelphia, Pa: W.B. Saunders Company; 2001:821.

- Excess glucose may directly harm vascular endothelium and other tissues
- Reduced insulin promotes mobilization of FFA from adipose tissue
 - Reduce HDL, increase LDL
 - Increase insulin resistance at liver and muscle
 - Damage insulin secreting beta cells
 - Promote arrhythmia in response to ischemia
 - Activate cellular inflammatory process

Potential CV beneficial effects of replacing insulin in dysglycemic individuals

 CV parameters such as lipids, platelet function, inflammatory markers, endothelial function might improve with insulin replacement therapy


Outcome Reduction with Initial Glargine Intervention

IFG, IGT, 또는 당뇨병 초기의 고위험 환자에 insulin glargine을 사용하여 정상 공복혈당을 목표로 하는 인슐린 대체 요법을 시행하면 표준 혈당 조절법 보다 심혈관 합병증의 위험을 감소시키는가?

IFG, IGT, 또는 당뇨병 초기의 고위험 환자에 Ω-3 PUFA 보충제는 심혈관 합병증의 위험을 감소시키는가?

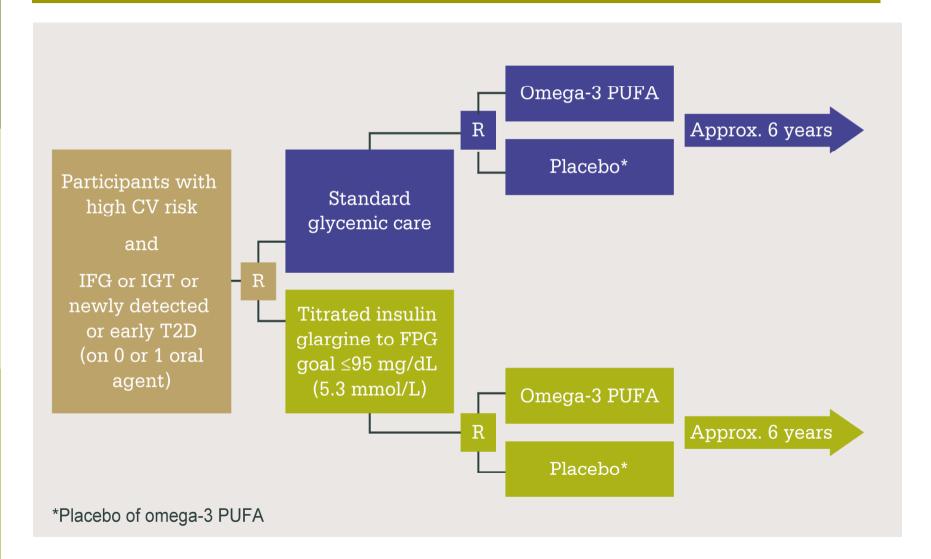
GISS-Prevenzione study: Fish oil and post-MI prognosis

11,323 patients, with recent MI (median 16 days post-MI) over 3.5 years

CHD, coronary heart disease. EPA, eicosapentaenoic acid. MI, myocardial infarction. PUFA, polyunsaturated fatty acid. Reproduced with permission from American Heart Association

ORIGIN: An international trial

Led by an independent steering committee
40 countries, >12500 patients, 6.3 years of follow-up



ORIGIN: An international trial

Metrics Global vs. Korea	Site		Number of Pt		
	Initation	Active	Screen	Random	
Global	538	578	15374	12612	
Korea	8	8	131	131	

■ Men and women aged ≥50 years
■ At high risk for CV event
■ a) IFG, IGT, or newly detected diabetes
■ b) established type 2 diabetes on stable therpay with 0 or 1 oral agent

ORIGIN: Assessing the effect of insulin glargine on cardiovascular complications in early T2DM

The ORIGIN Trial: Outcome measures

Primary outcomes

- Incident CV death, non-fatal MI, elevated cardiac markers and/or new electrocardiographic changes, or non-fatal stroke
- These events plus a revascularization procedure or hospitalization for heart failure

Secondary outcomes

- Each component of the primary outcomes
- All-cause mortality
- Microvascular events
- New type 2 diabetes

What can we expect to learn from ORIGIN?

Advancing scientific knowledge about insulin glargine related to:

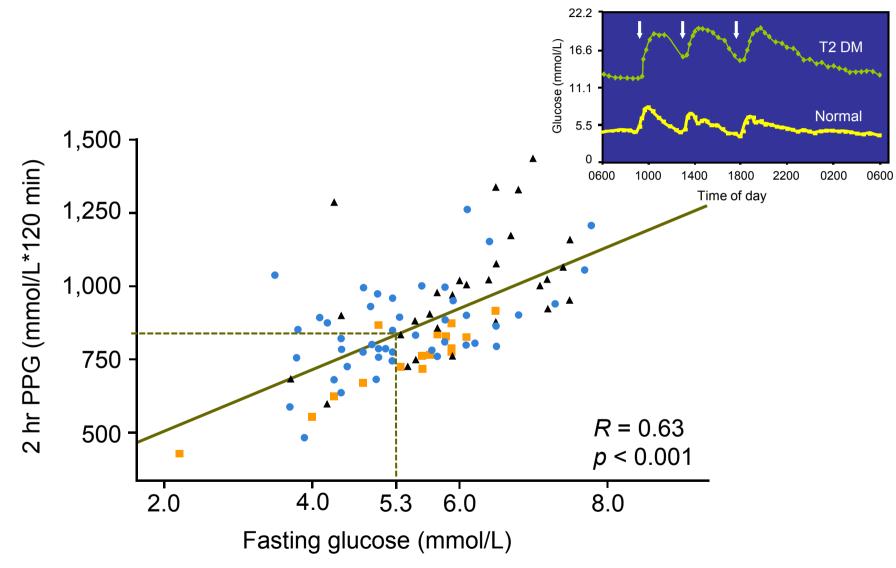
- Cardiovascular events
- Progression to diabetes from IFG/IGT
- Microvascular complications
- Beta cell function, carotid atherosclerosis, cardiac function, autonomic function, cognitive function, bone density (substudies)
- Hypoglycemia
- All-cause mortality
- Cancer incidence

D Epidemiology of early Type 2 diabetes worldwide

ORIGIN: Baseline Characteristics

Category	(mean±SD or %)
Ν	12,612
Age	64±8
Gender F/M	35/65
BMI	29.8±5.2
Previous CVD (%)	66
Previous albuminuria (%)	15
Previous diabetes (%)	82
Newly detected diabetes (%)	6
IFG and/or IGT (%)	12
Known duration, years	5±6
Anti-hyperglycemic treatment	0-1 OAD
Metformin (%)	27
Insulin secretagogue (%)	31
Diabetes diagnosed entry (%)	6
A1c (%)	6.5±1.0
FPG (mg/dL)	132±3.6

ORIGIN: Comparison with other CV outcome trials


	ACCORD ¹	VADT ²	ADVANCE ³	ORIGIN ⁴
n	10,251	1,792	11,140	12,612
Age yrs	62	60	66	64
Diabetes yrs	10	11.5	8	5.4
Not known to have DM (%)	0	0	0	18
Macrovasc. comp. (%)	35	40	32	66
Baseline A _{1c} %	8.3	9.4	7.5	6.5
Intensive Rx target	A _{1c} < 6%	A _{1c} < 6%	A _{1c} ≤ 6.5 %	FPG ≤5.3 mmol/L
Intervention	Multiple drugs	Multiple drugs	Gliclazide ± others	Glargine ± others

- 1. The ACCORD Study Group. N Engl J Med 2008;358:2545-59.
- 2. Duckworth W, et al. N Engl J Med 2009;360:129-39.
- 3. The ADVANCE Collaborative Group. N Engl J Med 2008;358:2560-72.
- 4. Gerstein HC, et al. Am Heart J 2008;155:26-32.

ORIGIN vs. UKPDS

	ORIGIN (N=12612)	UKPDS (N=3867)
Population Glycaemic Profile	IFG, IGT (12%) Newly diagnosed T2D (6%) Previously diagnosed T2D (82%)	Newly diagnosed T2D (100%)
Population CV Risk Profile	66% CV event Secondary prevention Age >50	No CV event Primary prevention Age 25-65
Glycemic target	FBG <5.3mmol/L	FBG <6mmol/L
Study Intervention	Normoglycemia with insulin therapy vs Standard glycemic care Insulin therapy is insulin glargine Insulin can be used in the control arm as a rescue medication only and insulin glargine can not be used.	SU/Insulin therapy targeting FBG <6mmol/L vs with conventional therapy targeting FPG <15mmol/L Insulin is Ultratard (not a basal analogue)
Baseline A1C	6.5%	8.1%
Started in	2003	1987

Tight control of FPG reduces PPG: ORIGIN-sub study

Hanefeld M, *et al. Diabet Med* 2010; 27:175–80; Polonsky et al, *N Engl J Med* 1988.

Outcome Reduction with Initial Glargine Intervention

결과는 2012년 ADA에서 발표될 예정

Conclusions (1)

- Dysglycemia is an independent risk factor for cardiovascular disease in the general population, regardless of diabetes status
- Intensive glycemic control in people with newly diagnosed diabetes reduces their long-term risk of cardiovascular disease
- Several ongoing trials are assessing the effects that different agents or strategies used for lowering levels of glucose have on cardiovascular outcomes

Conclusions (2)

- Treatment with insulin glargine provides effective glycemic control with better results achieved with earlier use
 - Data on the effects of glargine on CV complications in early T2DM are awaited (ORIGIN study)
- Despite the evidence for the beneficial effects of early insulin initiation, treatment is often delayed