Effective and Safe Management of Patients With Type 2 Diabetes and Chronic Kidney Disease Using Sitagliptin

Eun Seok Kang
Yonsei University College of Medicine
Severance Hospital Diabetes Center
Contents

- CKD Prevalence In Type 2 Diabetes Mellitus
- Complications In Type 2 Diabetes Mellitus With CKD
- KDOQI Guideline Update In 2012
- Sitagliptin Clinical Trials In CKD
Contents

- CKD Prevalence In Type 2 Diabetes Mellitus
- Complications In Type 2 Diabetes Mellitus With CKD
- KDOQI Guideline Update In 2012
- Sitagliptin Clinical Trials In CKD
Chronic Kidney Disease and Diabetes

- CKD is defined as progressive, irreversible loss in kidney function
- Stages of chronic kidney disease

<table>
<thead>
<tr>
<th>Stages</th>
<th>Description</th>
<th>eGFR (ml/min/1.73m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal or increased eGFR*</td>
<td>>90</td>
</tr>
<tr>
<td>II</td>
<td>Mildly decreases eGFR*</td>
<td>60-89</td>
</tr>
<tr>
<td>III</td>
<td>Moderately reduced eGFR</td>
<td>30-59</td>
</tr>
<tr>
<td>IV</td>
<td>Severely reduced eGFR</td>
<td>15-29</td>
</tr>
<tr>
<td>V</td>
<td>Kidney failure</td>
<td><15 or dialysis</td>
</tr>
</tbody>
</table>

* With evidence of structural kidney damage such as albuminuria, abnormal urinary sediment (i.e. casts, tubular epithelial cells), abnormal imaging studies, renal transplant recipients

Risk factors of Diabetic nephropathy
- Elevated blood pressure, Diabetes, Cholesterol, Microalbuminuria, Smoking, Genetic factors, Age and BMI

CKD – Chronic Kidney Disease
eGFR – estimated Glomerular Filtration Rate
Diagnosed diabetes was defined by the answer “yes” to the question, “Have you ever been told by a doctor or other health professional that you have diabetes or sugar diabetes?” Those who answered “no” or “borderline” (n=43) to the same question were classified according to their measured FPG only: Undiagnosed diabetes, FPG ≥ 126 mg/dl; prediabetes, FPG ≥100 but <126 mg/dl; and no diabetes, FPG <100 mg/dl.

Definitions of stages:
- Stage 1, eGFR >90 ml/min/1.73m² and presence of albuminuria at a single measurement
- Stage 2, eGFR 60 to 89 ml/min/1.73m² and presence of albuminuria at a single measurement
- Stages 3 and 4, eGFR 15 to 59 ml/min/1.73 m²

40% of Patients with T2DM show signs of CKD

Chronic kidney disease (CKD) prevalence was greater among people with diabetes than among those without diabetes (40.2% versus 15.4%)

* Normal kidney function, no sign of kidney damage
** Albuminuria – kidney damage

†Based on data from 1,462 patients aged ≥ 20 years with T2DM who participated in the Fourth National Health and Nutrition Examination Survey (NHANES IV) from 1999 to 2004.

Higher HbA$_{1c}$ level was associated with the increased incidence of CKD1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total Incidence</th>
<th>HbA$_{1c}$ Concentration Category %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA$_{1c}$ concentration, mean (SD)</td>
<td>7.07 (2.16)</td>
<td><6</td>
</tr>
<tr>
<td>CKD defined by visit 4 eGFR <60 mL/min/1.73 m2 or ICD-9 Code hospitalization</td>
<td>361 of 1871</td>
<td>91 of 770</td>
</tr>
<tr>
<td>No. of events</td>
<td>17.00</td>
<td>9.87</td>
</tr>
<tr>
<td>Incidence per 1000 person-years</td>
<td>1.25 (1.20-1.30)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Unadjusted HR (95% CI)</td>
<td>1.31 (1.25-1.38)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Adjusted HRb (95% CI)</td>
<td>1.10 (1.02-1.18)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>CKD defined by visit 4 eGFR <60 mL/min/1.73 m2 Hospitalization only</td>
<td>120 of 1871</td>
<td>39 of 770</td>
</tr>
<tr>
<td>No. of events</td>
<td>14.92</td>
<td>11.20</td>
</tr>
<tr>
<td>Incidence per 1000 person-years</td>
<td>1.10 (1.02-1.18)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Unadjusted HR (95% CI)</td>
<td>1.13 (1.03-1.25)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Adjusted HRb (95% CI)</td>
<td>1.29 (1.23-1.35)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>CKD defined by ICD-9 code Hospitalization only</td>
<td>292 of 1871</td>
<td>62 of 770</td>
</tr>
<tr>
<td>No. of events</td>
<td>13.58</td>
<td>6.68</td>
</tr>
<tr>
<td>Incidence per 1000 person-years</td>
<td>1.29 (1.23-1.35)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Unadjusted HR (95% CI)</td>
<td>1.33 (1.26-1.40)a</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Adjusted HRb (95% CI)</td>
<td>1.29 (1.23-1.35)a</td>
<td>1 (Reference)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HbA$_{1c}$, glycated hemoglobin; HR, hazard ratio; ICD-9, International Classification of Diseases, Ninth Revision; DM, diabetes mellitus.

SI conversion factor: To convert HbA$_{1c}$ to proportion of total hemoglobin, multiply by 0.01.

a Per 1% increase in HbA$_{1c}$ concentration.

b Adjusted for age, sex, race, study center, baseline eGFR, body mass index, hypertension status, use of antihypertensive agents, prevalent coronary heart disease, smoking status, low- and high-density lipoprotein cholesterol concentrations, and triglyceride concentration.

Pts with microalbuminuria have an Increased CV Risk (HOPE study)

ACR clinical threshold for microalbuminuria (2.0 mg/mmol)*

ACR = urine albumin/creatinine ratio

Cardiovascular events (%)

All-cause mortality (%)

Categorical increase in albuminuria (deciles)
Albuminuria is a risk factor for CV mortality (LIFE Study)

Contents

- CKD Prevalence In Type 2 Diabetes Mellitus
- Complications In Type 2 Diabetes Mellitus With CKD
- KDOQI Guideline Update In 2012
- Sitagliptin Clinical Trials In CKD
Incidence of complications is greater with Pts with both DM and CKD

Study design: The rates of ASVD, CHF, RRT, and death were compared in a 5% sample of the United States Medicare population in 1998 and 1999 (n=1,091,201). Patients were divided into the following groups: 1, no DM, no CKD; 2, DM, no CKD; 3, CKD, no DM; and 4, both CKD and DM. During the 2yr of follow-up, the rates in the 4 groups were analyzed.

Incident event rates in 2000-2001 in over 1 million elderly US Medicare beneficiaries (over age 67 years)

CHF — Congestive Heart Failure / PVD — Peripheral vascular Disease / ASCVII ASVD-Atherosclerotic Vascular Disease
RRT — Renal Replacement Therapy / DM — Diabetes Mellitus / CKD — Chronic Kidney Disease

Frequency of Hypoglycemia in Chronic Kidney Disease

- CKD defined as eGFR <60 ml/min/1.73 m²

- Incidence in patients without Diabetes, with and without CKD: 3.46 vs. 2.23 episodes per 100 patient-months

- Incidence in patients With Diabetes with and without CKD: 10.72 vs. 5.33 episodes per 100 patient-months

Hypoglycemia and Chronic Kidney Disease + Diabetes

Plasma glucose <2.8 mmol/L

Incident rate ratios

All p-values <0.0001, (95% CI)

Contents

- CKD Prevalence In Type 2 Diabetes Mellitus
- Complications In Type 2 Diabetes Mellitus With CKD
- KDOQI Guideline Update In 2012
- Sitagliptin Clinical Trials In CKD
Recommendations for Diabetes and CKD

<table>
<thead>
<tr>
<th>Management Topic</th>
<th>Target / Action</th>
</tr>
</thead>
</table>
| **Screening and diagnosis of Diabetic kidney disease** | Urinary albumin-creatinine ratio in a spot urine sample
Serum creatinine - eGFR |
| **Management of Hyperglycemia and General Diabetes Care in CKD** | **Target HbA1c for people with diabetes should be <7.0%, irrespective of the presence or absence of CKD.**
In case of intensive treatment,
- monitor patients' glucose levels closely
- reduce doses of medicines (insulin and oral agents) as needed to avoid hypoglycemia |
| **Comorbid diseases** | |
| **Hypertension** | Should be treated with an ACE inhibitor or an ARB, usually in combination with a diuretic
Target blood pressure should be <130/80 mmHg |
| **Dyslipidemia** | Target LDL-C should be <100 mg/dL (<70 mg/dL is a therapeutic option)
LDL-C ≥100 mg/dL should be treated with a statin
Treatment with a statin should not be initiated in patients with type 2 diabetes on maintenance hemodialysis therapy who do not have a specific cardiovascular indication for treatment. |
| **Nutrition** | Target dietary protein intake should be the RDA of 0.8 g/kg body weight per day |

Abbreviations:
CKD – Chronic Kidney Disease
eGFR – estimated Glomerular Filtration Rate
ACE – Angiotensin Converting Enzyme
ARB – Angiotensin Receptor Blocker
LDL-C – low-density lipoprotein cholesterol
RDA – Recommended Daily Allowance

* for people with diabetes and CKD stage 1-4

Recommend a target HbA1c of ~7.0% to prevent or delay progression of the microvascular complications of diabetes, including diabetic kidney disease (1A)

Recommend *not* treating to an HbA1c target of <7.0% in patients at risk of hypoglycemia (1B)

Suggest that target HbA1c be extended above 7.0% in individuals with co-morbidities or limited life expectancy and risk of hypoglycemia (2C)

Contents

- CKD Prevalence In Type 2 Diabetes Mellitus
- Complications In Type 2 Diabetes Mellitus With CKD
- KDOQI Guideline Update In 2012
- Sitagliptin Clinical Trials In CKD
Effect of Creatinine Clearance on Plasma Concentration AUC of a Single Dose of Sitagliptin

In a single-dose, open-label pharmacokinetic study,

AUC Increases With Decreasing Creatinine Clearance Necessitating a Dose Reduction to Maintain Therapeutic Concentration

AUC GMR increase <2-fold when CrCl ≥ 50 mL/min

Dose adjustments
CrCl<30 mL/min – ¼ dose
CrCl: 30 ~ 50 mL/min – ½ dose
CrCl≥50 mL/min – full dose

Abbreviations
*AUC (Area under the Curve)
*CrCl (Creatinine Clearance ml/min)
*GMR (Geometric Mean Ratio)
*ESRD (end-stage renal disease)

To achieve plasma concentrations of sitagliptin similar to those in patients with normal renal function, lower dosages are recommended in patients with moderate and severe renal insufficiency, as well as in ESRD patients requiring hemodialysis.¹

2. Data on file, MSD Korea.
3. JANUVIA® prescribing information, MSD Korea.
Safety and Efficacy of Sitagliptin in Patients With Type 2 Diabetes and Chronic Renal Insufficiency

Study Objective

- To assess the **Safety** of sitagliptin in patients with T2DM and
 - Moderate renal insufficiency (CrCl \geq 30 mL/min to <50 mL/min and not on dialysis) \rightarrow stratum 1, Sita 50mg/day
 - Severe renal insufficiency (CrCl <30 mL/min or ESRD with dialysis) \rightarrow stratum 2, Sita 25mg/day

- **Efficacy** of sitagliptin in these patients was also assessed

CrCl=creatinine clearance.
Patients with T2DM and CKD
Age ≥18 years

- Not on OHA (≥8 weeks) with HbA1c ≥6.5% – ≤10%
- On a stable dose of insulin monotherapy (≥4 weeks) with HbA1c 7.5%–10% and FPG >7.2 mmol/L
- On OHA with HbA1c 6%–10%

54-week, multinational, randomized, double-blind, parallel-group study

- Go directly to SB Placebo Phase
- Run-in/wash-off ≥6 weeks
- Run-in Period
- Week –2 Start SB
- Day1
- DB Placebo-Controlled Phase
- Week 12
- DB Continuation Phase

Sitagliptin
- 50 mg/day (stratum 1)
- 25 mg/day (stratum 2)

Placebo
Glipizide 5 mg/day (electively titrated to 20 mg/day)

To collect longer term data and maintain blinding for patients treated with sitagliptin, patients receiving placebo were transitioned to glipizide therapy after 12 weeks

CKD = chronic kidney disease; DB = double-blind; FPG = fasting plasma glucose; OHA = oral antihyperglycemic; SB = single-blind; T2DM = type 2 diabetes mellitus

Patient Disposition

Screened
n=357

Randomized
n=91

Sitagliptin
n=65

Placebo/Glipizide
n=26

Completed Study
n=46 (71%)

Completed Study
n=20 (77%)

Excluded (n=266)

- 41.0% did not meet HbA1c criteria
- 36.5% did not meet CrCl criteria

Discontinued
n=19 (29%)

- Clinical AE (4)
- Patient withdrew consent (6)
- Lost to follow-up (1)
- Patient died (4)
- Patient required excluded medications (3)
- Patient moved (1)

Discontinued
n=6 (23%)

- Clinical AE (3)
- Patient withdrew consent (1)
- Patient died (1)
- Patient required excluded medical procedure (1)

Excluded (n=266)

- 41.0% did not meet HbA1c criteria
- 36.5% did not meet CrCl criteria

Discontinued
n=6 (23%)

- Clinical AE (3)
- Patient withdrew consent (1)
- Patient died (1)
- Patient required excluded medical procedure (1)

完成了研究
n=46 (71%)

完成了研究
n=20 (77%)

AE=adverse event; CrCl=creatinine clearance.
Adapted from Chan JCN et al. Diabetes Obes Metab. 2008;10:545-555 with permission from Blackwell Publishing Ltd., Boston, MA.
Selected Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Sitagliptin (n=65)</th>
<th>Placebo/Glipizide (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>68.9</td>
<td>65.3</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>31 (48)</td>
<td>16 (62)</td>
</tr>
<tr>
<td>Females</td>
<td>34 (52)</td>
<td>10 (38)</td>
</tr>
<tr>
<td>Renal disease history, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum 1(^a)</td>
<td>37 (57)</td>
<td>15 (58)</td>
</tr>
<tr>
<td>Stratum 2(^b)</td>
<td>28 (43)</td>
<td>11 (42)</td>
</tr>
<tr>
<td>Dialysis patients, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of dialysis, years</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Diabetes history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration reported, years</td>
<td>13.6</td>
<td>13.2</td>
</tr>
<tr>
<td>Insulin therapy, n (%)</td>
<td>7 (11)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>HbA(_1c), %</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Fasting plasma glucose, mmol/L</td>
<td>8.9</td>
<td>8.6</td>
</tr>
</tbody>
</table>

\(^a\)Patients with moderate renal insufficiency (CrCl \(\geq\) 30 mL/min to <50 mL/min).

\(^b\)Patients with severe renal insufficiency (CrCl <30 mL/min and not on dialysis) or ESRD with dialysis.

Adapted from Chan JCN et al. Diabetes Obes Metab. 2008;10:545-555
Baseline Pre-Existing Cardiac-Related Disorders

<table>
<thead>
<tr>
<th>Cardiovascular Disease Category</th>
<th>Sitagliptin (n=65) n (%)</th>
<th>Placebo/Glipizide (n=26) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior cardiac-related disorder</td>
<td>34 (52.3)</td>
<td>10 (38.5)</td>
</tr>
<tr>
<td>History of prior HF</td>
<td>9 (13.8)</td>
<td>2 (7.7)</td>
</tr>
<tr>
<td>History consistent with CAD<sup>a</sup></td>
<td>26 (40.0)</td>
<td>6 (23.1)</td>
</tr>
<tr>
<td>Prior history of HF and/or history consistent with CAD<sup>a</sup></td>
<td>27 (41.5)</td>
<td>6 (23.1)</td>
</tr>
</tbody>
</table>

^aeg, diagnosis of CAD, prior stenting or bypass surgery, angina pectoris, ischemic cardiomyopathy, myocardial infarction, or myocardial ischemia.

CAD=coronary artery disease; HF=heart failure.
Safety and Tolerability of Sitagliptin

<table>
<thead>
<tr>
<th></th>
<th>Sitagliptin (n=65)</th>
<th>Placebo/Glipizide (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more clinical AEs, n (%)</td>
<td>52 (80.0)</td>
<td>22 (84.6)</td>
</tr>
<tr>
<td>Drug-related clinical AEs, n (%)<sup>b</sup></td>
<td>8 (12.3)</td>
<td>5 (19.2)</td>
</tr>
<tr>
<td>Serious clinical AEs, n (%)</td>
<td>20 (30.8)</td>
<td>10 (38.5)</td>
</tr>
<tr>
<td>Drug-related serious clinical AEs, n (%)<sup>b</sup></td>
<td>1 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Died, n (%)</td>
<td>5 (7.7)</td>
<td>1 (3.8)</td>
</tr>
</tbody>
</table>

Discontinued, n (%)

- Due to clinical AEs: 4 (6.2) / 2 (7.7)
- Due to drug-related clinical AEs: 1 (1.5) / 0
- Due to serious clinical AEs: 4 (6.2) / 2 (7.7)
- Due to drug-related serious clinical AEs: 1 (1.5) / 0

AEs=Adverse experiences. Patients may have experienced more than 1 AE but were only counted once within each category.

^aTo collect longer term data and maintain blinding for patients treated with sitagliptin, patients receiving placebo were switched to glipizide therapy after 12 weeks.

^bConsidered by the investigator as possibly, probably, or definitely related to treatment.

Adapted from Chan JCN et al. *Diabetes Obes Metab.* 2008;10:545-555
Incidence of Adverse Experiences with Specific Cardiovascular Disease Categories and Death

<table>
<thead>
<tr>
<th>Cardiovascular Disease Category</th>
<th>Sitagliptin n/100 patient-years</th>
<th>Placebo/Glipizide(^a) n/100 patient-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASVD</td>
<td>10.8</td>
<td>12.4</td>
</tr>
<tr>
<td>CAD</td>
<td>5.3</td>
<td>8.3</td>
</tr>
<tr>
<td>HF</td>
<td>8.9</td>
<td>4.0</td>
</tr>
<tr>
<td>CAD or HF</td>
<td>10.8</td>
<td>12.4</td>
</tr>
<tr>
<td>Death</td>
<td>8.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>

\(^a\) To collect longer-term data and maintain blinding for patients treated with sitagliptin, patients receiving placebo were switched to glipizide therapy after 12 weeks.

Rationale for adjustment of incidence of events for exposure\(^b\)

- High prevalence of ASVD and HF in patients with T2DM and CKD
- Differences in exposure to therapy between groups

\(^b\) Patient exposure (patient-years): time to event (years) for those patients who experienced an event or the time to the last day of study medication plus 14 days for those patients who did not experience an event.

ASVD=atherosclerotic vascular disease (including CAD); **CAD**=coronary artery disease; **HF**=heart failure; **CKD**=chronic kidney disease; **T2DM**=type 2 diabetes mellitus

Adapted from Chan JCN et al. *Diabetes Obes Metab.* 2008;10:545-555 with permission from Blackwell Publishing Ltd., Boston, MA.
Mortality

- 6 deaths among 91 randomized patients
 - 5 (7.7%) of 65 in the Sitagliptin group (8.8 deaths / 100 patient-years)
 - 1 (3.8%) of 26 in the placebo/glipizide group (4.0 deaths / 100 patient-years)

- Causes of death in sitagliptin group
 - 1 patient → pancreatic cancer
 - 4 patients → events consistent with underlying cardiovascular disease (myocardial infarction or sudden death)

- Cause of death in placebo/glipizide group
 - Septic shock in patient with ESRD and 28-year history of diabetes

ESRD=end-stage renal disease.
Incidence of Hypoglycemia and Anemia Over 54 Weeks

Changes in Mean Serum Creatinine Level

Mean Serum Creatinine Level

Baseline (moderate renal insufficiency, stratum 1)	138.8 μmol/L
Change at week 12	
• Sitagliptin	+10.8 μmol/L
• Placebo/glipizide	+6.2 μmol/L
Change at week 54	
• Sitagliptin	-1.8 μmol/L
• Placebo/glipizide	+61.0 μmol/L

Change in HbA$_{1c}$ From Baseline in Patients Treated With Sitagliptin

All Patients Treated Population

- **Placebo Controlled Phase**
- **Continuation Phase**

Placebo/Glipizide (n=25)

- LSM change from baseline in HbA$_{1c}$ in the placebo/glipizide group was -0.8% at week 54.

Sitagliptin (n=51)

LSM= least squares mean.

Adapted from Chan JCN et al. *Diabetes Obes Metab.* 2008;10:545-555 with permission from Blackwell Publishing Ltd., Boston, MA.
Efficacy and Safety of Sitagliptin vs. Glipizide in Patients With T2DM and Moderate-to-Severe Chronic Renal Insufficiency
Study Design

Multinational, randomized, double-blind, parallel-group, active-controlled, 54-week study in patients with T2DM and eGFR <50mL/min aged ≥30 years

- Not on AHA (≥12 wks) and HbA$_{1c}$ 7%-9%
- Not on AHA (≥12 weeks) and HbA$_{1c}$ >9%
- On monotherapy or low-dose dual combination and HbA$_{1c}$ 6.5%-9%

Visit 2
- Combined Visit 2/3/4
- Run-in/ wash-off period

Visit 3
- Single-blind pbo

Visit 2
- Sitagliptin 50 mg/day (eGFR ≥30 to <50 mL/min)
- Sitagliptin 25 mg/day (eGFR <30 mL/min)

Visit 2
- Glipizide 2.5 mg/day titrated to maximum of 20 mg/day as appropriate (mean dose = 7.7 mg)

HbA$_{1c}$ 7%-9% at or just prior to Visit 4

Visit 1
- Screening Period

Visit 2
- Run-In Period

Visit 3
- Double-Blind Treatment Period

Visit 14
- Week 54

T2DM=type 2 diabetes mellitus; eGFR=estimated glomerular filtration rate; AHA=antihyperglycemic; pbo=placebo.

HbA\textsubscript{1c} Results At Week 54

Per Protocol Population

Baseline HbA\textsubscript{1c}: sitagliptin = 7.8%; glipizide = 7.8%

![Graph showing the HbA\textsubscript{1c} results at Week 54. The graph displays a comparison between sitagliptin (n=135) and glipizidea (n=142). The mean change from baseline is shown as -0.8 for sitagliptin and -0.6 for glipizide. The LS Mean Between-Group Difference (95% CI): -0.1% (-0.3, 0.1). Noninferiority: upper bound of the 95% CI around the between-group difference < 0.4%.]

*LS=least squares; CI=confidence interval. *Mean dose of glipizide was 7.7 mg per day. 1. Arjona Ferreira JC et al. Diabetes Care. 2012 December 17.*
Sitagliptin Reduced HbA$_{1c}$ Levels After 54 Weeks in Patients With Moderate-to-Severe Renal Insufficiency

Per Protocol Population

Baseline HbA$_{1c}$: sitagliptin = 7.8%; glipizide = 7.8%

LS Mean Between-Group Difference (95% CI):

$-0.1\% (-0.3, 0.1)$

Noninferiority: upper bound of the 95% CI around the between-group difference < 0.4%.

-0.6%
-0.8%

LS Mean Change From Baseline, %

Week

0 6 12 18 24 30 36 42 48 54

Sitagliptin
a 25 mg or 50 mg

Glipizide
a,b 2.5 mg/day titrated to maximum of 20 mg/day

LS=least squares; CI=confidence interval.

^nSitagliptin (n=135), Glipizide (n=142) at week 54.

^bMean dose of glipizide was 7.7 mg per day.

FPG Results at 54 Weeks

Per Protocol Population

Baseline FPG; sitagliptin = 148.6 mg/dL; glipizide = 143.9 mg/dL

LS Mean Between-Group Difference (95% CI):
7.1 mg/dL (−1.9, 0.1)

-17.5 mg/dL

-24.6 mg/dL

Week

0 6 12 18 24 30 36 42 48 54

LS Mean (± SE) Change From Baseline, mg/dL

FPG=fasting plasma glucose; LS=least squares; SE=standard error; CI=confidence interval.

aSitagliptin (n=136), Glipizide (n=142) at week 54.

bMean dose of glipizide was 7.7 mg per day.

1. Adapted with permission from Arjona Ferreira JC et al. Diabetes Care. 2012 December 17. [Epub ahead of print].
Subgroup Analyses at Week 54

Sitagliptin Better
- Female (n=55, 64)
- Male (n=80, 78)
- Age ≤ median (64.0 years) (n=63, 79)
- Age > median (64.0 years) (n=72, 63)
- Age <65 years (n=63, 79)
- Age ≥65 years (n=72, 63)
- Asian (n=72, 83)
- White (n=40, 40)
- Black (n=2, 2)
- Other (n=21, 17)
- Hispanic or Latino (n=45, 41)
- Not Hispanic or Latino (n=90, 101)
- Baseline body mass index ≤ median (26.4 kg/m²) (n=70, 72)
- Baseline body mass index > median (26.4 kg/m²) (n=65, 70)

Glipizide Better

Estimate of Difference in LS Mean Change (Sitagliptin vs Glipizide)

LS=least squares.
1. Data on file, MSD.
Subgroup Analyses at Week 54 (Per Protocol Population) *(continued)*

<table>
<thead>
<tr>
<th>Group Description</th>
<th>Sitagliptin</th>
<th>Glipizide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate renal insufficiency (n=98, 106)</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Severe renal insufficiency (n=37, 36)</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Baseline HbA1c ≤ median (7.80%) (n=80, 84)</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Baseline HbA1c > median (7.80%) (n=55, 58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline HbA1c <8% (n=87, 88)</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Baseline HbA1c ≥8% (n=48, 54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On oral antihyperglycemic therapy (n=94, 93)</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Not on antihyperglycemic therapy (n=41, 49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of diabetes ≤ median (10.0 Years) (n=70, 89)</td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td>Duration of diabetes > median (10.0 Years) (n=65, 53)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LS=least squares.

1. Data on file, MSD.
Sitagliptin Resulted in No Weight Gain Compared With Glipizide

Baseline weight; sitagliptin = 68.0 kg glipizide = 70.2 kg

LS mean difference at week 54 −1.8; P < 0.001

APaT=All Patients as Treated; LS=least squares. *25 mg once daily or 50 mg once daily. †Mean dose of glipizide was 7.7 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day. 1. Arjona Ferreira JC et al. Diabetes Care. 2012 December 17. [Epub ahead of publication].
Sitagliptin Resulted in a Lower Proportion of Patients Experiencing Symptomatic Hypoglycemia Compared With Glipizide

- Sitagliptin (n=210)
- Glipizide (n=212)

Patients With ≥1 Hypoglycemic Event Over 54 Weeks, %

Symptomatic Hypoglycemia

P = 0.001

Additional information:
- APaT=All Patients as Treated; LS=least squares.
- *25 mg once daily or 50 mg once daily.
- aMean dose of glipizide was 7.7 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day. 1. Arjona Ferreira JC et al. Diabetes Care. 2012 December 17. [Epub ahead of publication].
Efficacy and Safety of Sitagliptin in Patients With Type 2 Diabetes and End-Stage Renal Disease on Dialysis — A 54-Week Randomized Trial
Study Design

Multinational, randomized, double-blind, parallel-group, active-controlled study in patients with T2DM on dialysis aged ≥30 years

- Not on AHA (≥12 wks) and HbA₁c 7%-9%
- Not on AHA (≥12 weeks) and HbA₁c >9%
- On monotherapy or low-dose dual combination and HbA₁c 6.5%-9%

Combined Visit 2/3/4

Run-in/wash-off period

Screening Period

Run-In Period

Double-Blind Treatment Period

Visit 1 screening
Visit 2 run-in period
Visit 3
Visit 4 pbo run-in period Week –2
Visit 5 Day 1 randomization

Visit 2 to Visit 4 run-in/wash-off period of variable duration depending on Visit 1 status, including diet and exercise, antihyperglycemic therapy, and baseline HbA₁c.

HbA₁c 7%-9% at or just prior to Visit 4

Insulin glycemic rescue for patients meeting prespecified criteria

Sitagliptin 25 mg/day

Glipizide 2.5 mg/day titrated to maximum of 20 mg/day as appropriate (mean dose = 5.3 mg)

T2DM=type 2 diabetes mellitus; AHA=antihyperglycemic; pbo=placebo.
Sitagliptin Significantly Reduced HbA$_{1c}$ at 54 Weeks From Baseline in Patients With ESRD on Dialysis

FAS/LOCF Population

Baseline HbA$_{1c}$; sitagliptin = 7.9%; glipizide = 7.8%

LS Mean Change From Baseline, % (95% CI)

- Sitagliptina (n=62)
 - $-0.72 (-0.95, -0.48)$
 - LS Mean Change From Baseline (Primary End Point)
 - $P < 0.001$ (from baseline)

- Glipizideb (n=59)
 - $-0.87 (-1.11, -0.63)$
 - $P < 0.001$ (from baseline)

FAS=full analysis set; LOCF=last observation carried forward; LS=least squares; SE = standard error; CI=confidence interval. a25 mg once daily. bMean dose of glipizide was 5.3 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day. 1. Arjona Ferreira JC et al. Am J Kidney Dis. DOI: 10.1053/j.ajkd.2012.11.043.
Sitagliptin Significantly Reduced HbA1c at 54 Weeks From Baseline in Patients With ESRD on Dialysis

FAS/LOCF Population
Baseline HbA1c: sitagliptin = 7.9%; glipizide = 7.8%

LS Mean Between-Group Difference (95% CI):
0.15% (−0.18, 0.49)

Primary End Point
LS Mean Change From Baseline (95% CI) at Week 54:

-0.72% (−0.95, −0.48)
-0.87% (−1.11, −0.63)

FAS=full analysis set; LOCF=last observation carried forward; LS=least squares; SE=standard error; CI=confidence interval. 25 mg once daily (n=62). \(^1\)Mean dose of glipizide was 5.3 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day (n=59). 1. Arjona Ferreira JC et al. Am J Kidney Dis. DOI: 10.1053/j.ajkd.2012.11.043.
Sitagliptin Did Not Result in Weight Gain

APaT = All Patients as Treated; LS = least squares; CI = confidence interval. a 25 mg once daily. b Mean dose of glipizide was 5.3 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day. 1. Arjona Ferreira JC et al. Am J Kidney Dis. DOI: 10.1053/j.ajkd.2012.11.043.
Sitagliptin Had a Generally Low Proportion of Patients With Symptomatic Hypoglycemia

LS Mean Between-Group Difference (95% CI):
-4.5% (−15.3, 5.6); *P*=0.3

![Bar chart showing patients with ≥1 episode of symptomatic hypoglycemia](chart.png)

APaT=All Patients as Treated; LS=least squares; CI=confidence interval. *25 mg once daily. *Mean dose of glipizide was 5.3 mg per day. Glipizide was initiated at 2.5 mg/day and titrated to a maximum of 20 mg/day.

Sitagliptin Dosing

<table>
<thead>
<tr>
<th>Renal Function</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Renal Function</td>
<td>Sitagliptin 100 mg once daily</td>
</tr>
<tr>
<td>Mild Renal Insufficiency (CrCl ≥50 mL/min)</td>
<td>Sitagliptin 100 mg once daily</td>
</tr>
<tr>
<td>Moderate Renal Insufficiency</td>
<td>Sitagliptin 50 mg once daily</td>
</tr>
<tr>
<td>(CrCl ≥30 to <50 mL/min)</td>
<td></td>
</tr>
<tr>
<td>Severe Renal Insufficiency</td>
<td>Sitagliptin 25 mg once daily</td>
</tr>
<tr>
<td>(CrCl <30 mL/min)</td>
<td></td>
</tr>
<tr>
<td>ESRD requiring hemodialysis or peritoneal dialysis</td>
<td>Sitagliptin 25 mg once daily</td>
</tr>
</tbody>
</table>

- Sitagliptin may be administered without regard to the timing of dialysis.
- Because there is a dosage adjustment based upon renal function, assessment of renal function is recommended prior to initiation of sitagliptin and periodically thereafter.
- When sitagliptin is used in combination with a sulfonylurea or with insulin, a lower dose of sulfonylurea or insulin may be considered to reduce the risk of sulfonylurea- or insulin-induced hypoglycemia.
Conclusions

CKD prevalence is high in T2DM and higher HbA$_{1c}$ level is associated with the increased incidence of CKD.

Complications in patients with T2DM with CKD is higher than in patients with single underlying disease.

Sitagliptin is effective and safe in T2DM with CKD.
 - 100 mg once daily for mild CKD to normal kidney function
 - 50 mg once daily for moderate CKD (eGFR <50)
 - 25 mg once daily for severe CKD (eGFR <30)
경청해주셔서 감사합니다.