New diabetes nutrition therapy guidelines: the evidence and controversies - focus on macronutrients

Carbohydrate high or low

서울성모병원 영양팀 노민영

Type of carbohydrate	Digestion and absorption in small intestine ^a	US food labeling designation
Monosaccharides		
Glucose, fructose, galactose	+	Sugars
Sorbitol, mannitol, etc	+/	Sugar alcohol
Disaccharides		100 million (100 million (100 million))
Sucrose, maltose, lactose	+	Sugars
Lactitol, maltitol, etc	+/	Sugar alcohol
Oligosaccharides		Asto Propresentation
α -Galactosides (eg. raffinose, stachyose)		Other carbohydrate
Fructooligosaccharides	3 —	Other carbohydrate
Maltodextrins	+	Other carbohydrate
Polydextrose	30 -	Other carbohydrate
Polysaccharides		
Starch (<i>a</i> -glucans)		
Amylose	+/	Other carbohydrate
Amylopectin	+/-	Other carbohydrate
Modified food starches	+/	Other carbohydrate
Nonstarch (non- α -glucans) polysaccharides		
Cell wall and chemically related polymers		
(eg. cellulose, hemicelluloses, pectins, β-glucans)		Dietary fiber
Storage (eg, inulins or fructans, guar)		Dietary fiber
Plant gums, exudates, and seed mucilages		Entretonia Informationale an
(eg, Ispaghula or psyllium)		Dietary fiber
Algal polysaccharides		Dietary fiber

Figure. Main types of food carbohydrates. ^aPlus sign (+) represents complete/nearly 100% digestion and absorption in the small intestine, whereas plus-or-minus sign (+/-) represents partly digested and absorbed, with the range being very large (2% to 90%), and minus sign (-) represents no digestion and absorption in the small intestine. Adapted with permission from reference 4: *Am J Clin Nutr.* 1995;61(suppl):930S-937S, American Society for Nutrition, and from reference 5: *Am J Clin Nutr.* 1995;61(suppl):938S-945S, American Society for Nutrition.

Wheeler et al, J Am Diet Assoc., 2008;108:S34-S39

Historical period	Author/title	Type of diet
1550 вс	Ebers Papyrus	Rich in carbohydrates such as wheat, grains,
AD 128-200	Galen	Sun-dried membranes from young roosters' abdomen or drinks made of a mixture of mountain copper, dry acorn, flower of the wild pomegranate, oak gall, honey of roses and cold water
980-1037	Avicenna	Rich in lupin, fenugreek and zedoary
1621-75	Thomas Willis	Milk and barley-water boiled with bread
1799	John Rollo	1500-calorie diet, low in carbohydrates and high in fat and protein, based on rancid meat and blood pudding
Beginning of the 20th century	Allen, Joslin	Very low-calorie diet, called the 'starvation diet', high in protein and fat and low in carbohydrates. Contained 70% fat, 10% carbohydrate, 20% protein
1940s	American Diabetes Association	Carbohydrate content of 40%
1950	American Diabetes Association	Normal quantity of calories, comprise 43% carbohydrate, 19% protein, 37% fat
1971	American Diabetes Association	45% or more carbohydrate
1979	American Diabetes Association	50-60% carbohydrate, 12-20% protein, 20-30% fat
1986	American Diabetes Association	55–60% carbohydrate, 0.8 g/kg protein, total fat <30%
1994	American Diabetes Association	10–20% protein, <10% from saturated fat
2008	American Diabetes Association	130 g/day carbohydrate, 14 g fibre/1000 kcal, cholesterol <200 mg/day, 20% protein

Table 1. Timeline of diets for treating diabetes mellitus

Diabetes Metab Res Rev 2014;30(Suppl. 1): 24–33

	Standards of Medical Care in Diabetes—2015						
	Evidence suggests that <u>there is not an ideal percentage of calories from</u> <u>carbohydrate, protein, and fat</u> for all people with diabetes B; therefore, <u>macronutrient distribution should be based on individualized</u> assessment of current eating patterns, preferences, and metabolic goals. E	B, E					
Eating patterns and macronutrient	<u>Carbohydrate amount</u> and available insulin may be <u>the most important</u> <u>factors influencing glycemic response</u> after eating and should be considered when developing the eating plan.	A					
distribution	Monitoring carbohydrate intake, whether by carbohydrate counting or experience-based estimation, remains critical in achieving glycemic control.	В					
	Carbohydrate intake from <u>vegetables, fruits, whole grains, legumes, and</u> <u>dairy products</u> should be advised over intake from other carbohydrate sources, especially those that contain added fats, sugars, or sodium.	В					

Q. Adequate carbohydrate distribution(amount)?

FOCUS in glucose control

FIGURE 2. Mean (±SEM) glycated hemoglobin (HbA_{1c}), fasting glucose, and plasma glucose concentrations 2 h after a 75-g oral-glucose-tolerance test (OGTT) in subjects receiving the high-glycemic-index (\bigcirc ; n = 48), low-glycemic-index (\bigcirc ; n = 55), and low-carbohydrate (\blacktriangle ; n = 53) diets. Values are the residuals of regression models including the baseline value and other significant confounding variables, which were as follows: HbA_{1c}, none; fasting glucose, BMI; 2-h post-OGTT glucose, fasting glucose.

Wolever et al, Am J Clin Nutr:2008;87(1):114-25.

[Method] 1. 162 Type 2 diabetes, Canada, 12months 2. High GI(●) : <u>46.5%</u> carbohydrates, 30.8% fat, 20.4% protein Low GI(○) : <u>51.9%</u> carbohydrates, 26.5% fat, 20.6% protein Low CHO(▲) : <u>39.3%</u> carbohydrates, 40.1% fat, 19.1% protein

[Result]

: <u>no significant difference</u> in HbA1c with the different diets

6

Haimoto et al, Diabetes Res Clin Pract. 2008;79(2):350-356

Table 4 - Changes in HbA1c level, BMI, serum cholesterols, uric acid and creatinine in the conventional diet and CARD groups in the 2-year study period						
		CD			CARD	
	Baseline (n = 57)	After 1 year (n = 57)	After 2 years (n = 57)	Baseline $(n = 76)$	After 1 year (n = 70)	After 2 years $(n = 45)$
HbA1c (%)	7.1 ± 1.0 (5.9-10.6)	7.0 ± 1.0" (6.0-10.2)	7.5 ± 1.3" (6.0-13.7)	7.4 ± 1.1 (6.2-12.6)	6.7 ± 0.7 ^a (5.3-8.8)	6.7 ± 0.6 ^a (5.4-8.3)
BMI Total cholesterol ^b (mg/dl) LDL cholesterol ^b (mg/dl) Uric acid (mg/dl) Greatinine (mg/dl)	$24.2 \pm 2.9 (19.3-30.4)$ 201 ± 34 122 ± 30 5.0 ± 1.2 0.86 ± 0.17	24.0 ± 2.9* (19.1-29.7)	$\begin{array}{c} 23.8 \pm 3.0^{\circ} \ (18.7 - 30.8) \\ 210 \pm 38^{\circ} \\ 134 \pm 39^{d} \\ 5.3 \pm 1.4^{\circ} \\ 0.70 \pm 0.16^{f} \end{array}$	25.1 ± 3.4 (17.9-34.5) 205 ± 33 122 ± 29 4.9 ± 1.4 0.86 ± 0.20	24.3 ± 3.3° (17.7-33.1)	$\begin{array}{c} 23.8 \pm 3.5^{\circ} \ (17.1 32.7) \\ 200 \pm 29^{\circ} \\ 117 \pm 25^{\circ} \\ 5.8 \pm 1.4^{\circ} \\ 0.73 \pm 0.22^{\circ} \end{array}$

Values are means ± S.D. The time trends were statistically tested by ANOVA. The numbers in parenthesis express ranges.

P < 0.001.</p>

^b Fourteen patients (CD: 5, CARD: 9) were excluded because they received lipids-lowering agents.

^c P=0.037.

^d P = 0.011.

^e P = 0.192.

P= 0.653.

[Method]

- 1. 133 Type 2 diabetes, Japan, 24months
- 2. CARD, carbohydrate-reduced diet : <u>45%</u> carbohydrates, 33% fat, 18% protein
 - CD, conventional diet : 57% carbohydrates, 26% fat, 16% protein

[Result]

: 2-year follow-up period, <u>HbA1c levels were significantly improved in the CARD group</u> (P < 0.001)

RCT

- 9
-1

Table 2-Change in anthropometric and metabolic outcomes at 3, 6, and 12 months after diet initiation

	3 months	6 months	12 months	Р
AIC				
Low-carbohydrate diet	-0.64 ± 1.4	-0.29 ± 0.92	-0.02 ± 0.89	0.71
Low-fat diet	-0.26 ± 1.1	-0.15 ± 1.1	0.24 ± 1.4	0.000
Weight (kg)*			BASSAG PARADALAN DA	
Low-carbohydrate diet	-5.2 ± 2.8	-4.8 ± 3.5	-3.1 ± 4.8	0.00
Low-fat diet	-3.2 ± 3.7	-4.4 ± 5.3	-3.1 ± 5.8	
Systolic blood pressure (mmHg)				
Low-carbohydrate diet	-5.8 ± 19.2	-0.78 ± 17.7	2.0 ± 15.6	0.15
Low-fat diet	-0.98 ± 21.0	-37 ± 19.8	-1.8 ± 22.6	
Diastolic blood pressure (mmHg)				
Low-carbohydrate diet	-2.2 ± 12.5	-0.93 ± 12.4	-2.9 ± 9.4	0.62
Low-fat diet	-0.40 ± 12.6	0.95 ± 9.8	-2.2 ± 11.6	
Total cholesterol (mmol/l)†				
Low-carbohydrate diet		0.05 ± 0.79	0.10 ± 0.76	0.37
Low-fat diet		-0.27 ± 0.74	-0.13 ± 0.70	
LDL (mmol/l)				
Low-carbohydrate diet		-0.10 ± 0.52	-0.04 ± 0.63	0.23
Low-fat diet		-0.25 ± 0.56	-0.18 ± 0.66	
HDL (mmol/l)				
Low-carbohydrate diet		0.16 ± 0.28	0.16 ± 0.27	0.002
Low-fat diet		-0.01 ± 0.22	0.06 ± 0.21	
Triglycerides (mmol/l)				
Low-carbohydrate diet		-0.02 ± 0.85	-0.15 ± 0.88	0.53
Low-fat diet		0.04 ± 0.56	-0.01 ± 0.86	

Data are means ± SD. *P values for diet difference over all time points. †Lipid values were not collected at 3 months.

[Method]

Davis et al, Diabetes Care; 2009;32(7):1147-

52

- 1. 105 Type 2 diabetes with overweight, USA, 12months
- 2. Low-carbohydrate diet : <u>33.4%</u> carbohydrates, 43.9% fat, 22.7% protein Low fat diet : <u>50.1%</u> carbohydrates, 30.8% fat, 18.9% protein

[Result]

: There was no significant change in A1C in either group at 1 year

Cros	S-												
sectio	nal	, anese pa	itients with	type 2 diabe	etes divided b	oy quarti	les of glycate	ed hemoglo	bin Alc			U	
	Q1 (-7.90) (n = 89)	Q2 (7.90-8.30) (n = 128)	Q3 (8.30~8.80) (n = 93)	Q4 (8.80~) (n = 107)	Total (n = 417)	P for trend	Women Q1 (-7.90) (n = 117)	Q2 (7.90-8.30) (n = 141)	Q3 (8.30~8.80) (n = 110)	Q4 (8.80) (n = 127)	Total (n = 495)	P for trend	-
Age (years)	71.7 ± 4.8	70.9 ± 4.3	72.0 ± 4.5	71.5 ± 4.8	71.4 ± 4.6	0.782	73.0 ± 4.5	72.0 ± 4.9	71.3 ± 4.5	72.7 ± 5.1	72.3 ± 4.8	0.483	
Body height (cm)	162.4 ± 5.6	162.2 ± 6.6	162.9 ± 6.4	163.1 ± 6.8	162.6 ± 6.4	0.336	150.1 ± 5.2	149.8 ± 5.0	150.1 ± 5.6	149.4 ± 5.5	149.9 ± 5.3	0.358	
Body weight (kg)	62.3 ± 8.3	61.8 ± 9.2	61.9 ± 8.2	62.9 ± 9.8	62.2 ± 8.9	0.582	54.8 ± 9.5	53.1 ± 8.5	54.8 ± 9.7	53.1 ± 8.3	53.9 ± 9.0	0.347	
BMI (kg/m2)	23.6 ± 3.0	23.5 ± 2.9	23.3 ± 3.0	23.6 ± 3.4	23.5 ± 3.1	0.986	24.3 ± 4.0	23.6 ± 3.5	24.3 ± 4.0	23.7 ± 3.2	24.0 ± 3.7	0.523	
Waist circumference (cm)	86.7 ± 8.1	85.9 ± 9.2	85.6 ± 8.9	87.2 ± 8.7	86.3 ± 8.8	0.657	84.0 ± 11.2	81.0 ± 11.0	81.8 ± 10.9	80.3 ± 9.6	81.7 ± 10.7	0.025*	
Hip circumference (cm)	95.5 ± 7.0	94.3 ± 7.2	93.6 ± 7.0	94.9 ± 6.9	94.6 ± 7.0	0.517	94.5 ± 8.1	92.2 ± 8.8	94.0 ± 8.9	92.4 ± 8.3	93.2 ± 8.6	0.244	
Waist/hip ratio	0.91 ± 0.06	0.91 ± 0.06	0.91 ± 0.06	0.92 ± 0.06	0.91 ± 0.06	0.165	0.89 ± 0.08	0.88 ± 0.08	0.87 ± 0.07	0.87 ± 0.07	0.88 ± 0.08	0.042*	
Therapy for diabetes (n)	17/59/13	21/72/35	9/58/26	5/65/37	52/254/111	0.004***	12/75/30	10/85/46	8/65/37	8/79/40	38/304/153	0.789*	
(Diet/oral diabetes	19.1/66.3/14.6	16.4/56.3/27.3	9.7/62.4/28.0	4.7/60.7/34.6	12.5/60.9/26.6	0.004***	10.3/64.1/25.6	7.1/60.3/32.6	7.3/59.1/33.6	6.3/62.2/31.5	8/61/31	0.7897	
LIBA1c (%)	759+013	8.04 + 0.10	8 47 + 0 14	956 + 0.91	8 43 + 0 86	0.000**	7.62 ± 0.14	803+011	848+014	9.67 ± 0.99	8 45 + 0 97	0.000##	Kamada
Easting plasma alucose	155 1 + 36.0	1671 + 483	1716 + 506	1807 + 58 3	169.0 ± 50.0	0.000	1545 + 403	150 0 + 45 4	1607 ± 48 1	18154609	166 7 4 50 5	0.000	Kamada
(mg/dL)	155.1 ± 56.0	107.1 ± 40.0	171.6 ± 30.6	160.7 1 36.5	105.0 ± 30.0	0.001	194.9 1 40.9	100.7 1 40.4	107.2 I 70.1	181.3 ± 00.9	100.2 ± 30.3	0.000	et al,
Total cholesterol (mg/dL)	193.6 ± 31.0	187.1 ± 29.8	192.0 ± 36.9	199.5 ± 31.9	192.7 ± 32.5	0.072	211.5 ± 33.5	208.0 ± 32.1	213.1 ± 39.5	213.0 ± 36.8	211.3 ± 35.3	0.484	<u> </u>
Triglycerides (mg/dL)	146.1 ± 90.8	123.3 ± 65.0	131.2 ± 86.1	141.7 ± 169.6	134.6 ± 109.9	0.949	135.4 ± 71.4	136.5 ± 69.2	131.9 ± 67.7	129.1 ± 69.9	133.3 ± 69.4	0.388	Geriar
LDL cholesterol (mg/dL)	112.5 ± 28.2	113.3 ± 30.1	115.1 ± 31.1	120.1 ± 25.6	115.3 ± 28.9	0.051	122.4 ± 32.1	122.1 ± 30.0	125.8 ± 34.5	128.5 ± 32.5	124.6 ± 32.2	0.085	<u> </u>
HDL cholesterol (mg/dL)	53.1 ± 20.9	49.0 ± 13.6	51.7 ± 16.8	52.8 ± 14.3	51.5 ± 16.3	0.669	62.1 ± 20.8	60.3 ± 19.7	60.9 ± 17.9	58.6 ± 16.3	60.4 ± 18.7	0.196	Geronto
Albumin (g/dL)	4.16 ± 0.36	4.20 ± 0.30	4.20 ± 0.38	4.22 ± 0.33	4.19 ± 0.34	0.294	4.22 ± 0.31	4.26 ± 0.40	4.20 ± 0.44	4.21 ± 0.32	4.22 ± 0.37	0.418	T 1 2017
Systolic blood pressure (mmHg)	139.8 ± 14.8	135.7 ± 15.6	134.2 ± 16.4	133.2 ± 15.0	135.6 ± 15.6	0.003**	140.6 ± 17.3	134.9 ± 14.7	135.7 ± 16.2	138.0 ± 15.9	137.2 ± 16.1	0.338	Int. 2012
Diastolic blood pressure (mmHø)	76.4 ± 9.5	75.0 ± 9.9	75.6 ± 9.9	74.9 ± 9.7	75.4 ± 9.7	0.404	74.1 ± 11.1	74.1 ± 9.9	74.3 ± 8.6	75.1 ± 8.5	74.4 ± 9.6	0.406	41-49
Energy (kcal/day)	1756 ± 329	1750 ± 372	1899 ± 382	1820 ± 468	1802 ± 396	0.054	1645 ± 330	1659 ± 331	1721 ± 357	1625 ± 329	1661 ± 337	0.932	
Energy/standard bodyweight (kcal/dav/ko)	30.4 ± 6.1	30.3 ± 6.5	32.6 ± 6.7	31.1 ± 7.5	31.0 ± 6.8	0.153	33.2 ± 6.8	33.6 ± 6.8	34.8 ± 7.3	33.1 ± 6.7	33.7 ± 6.9	0.836	
Energy/present bodyweight (kcal/dav/kg)	28.6 ± 6.2	28.8 ± 6.9	31.2 ± 7.3	29.4 ± 7.9	29.4 ± 7.2	0.152	30.8 ± 7.5	32.1 ± 8.4	32.1 ± 8.0	31.3 ± 7.8	31.6 ± 7.9	0.646	
Protein (%E)	15.2 ± 2.4	15.0 ± 1.9	15.4 ± 2.3	15.2 ± 2.2	15.2 ± 2.2	0.671	15.6 ± 2.1	15.8 ± 2.2	15.5 ± 1.8	15.7 ± 2.3	15.7 ± 2.1	0.910	
Fat (%F)	747 + 44	251 ± 51	26.0 + 5.0	257+51	254+50	0.095	253 ± 42	259+45	761 ± 44	256 ± 47	258 ± 45	0.594	
Carbohydrate (%E)	60.1 ± 5.8	59.9 ± 6.0	58.6 ± 6.2	59.2 ± 6.6	59.5 ± 6.2	0.134	59.0 ± 5.7	58.3 ± 5.6	58.4 ± 5.3	58.7 ± 6.3	58.6 ± 5.7	0.708	
Protein (e/day)	66.9 ± 16.8	65.6 ± 17.2	73.4 ± 19.0	69.5 ± 23.6	68.6 ± 19.5	0.066	65.1 ± 19.0	65.7 ± 16.8	67.0 ± 17.5	64.6 ± 19.0	65.6 ± 18.0	0.929	
Fat (g/day)	48.7 ± 15.0	49.7 ± 17.4	55.9 ± 19.4	53.0 ± 21.7	51.7 ± 18.7	0.026*	47.2 ± 15.1	48.8 ± 16.1	50.7 ± 16.4	47.3 ± 16.2	48.4 ± 16.0	0.794	
Carbohydrate (g/day)	245.6 ± 41.5	245.9 ± 46.6	260.6 ± 49.8	248.3 ± 58.5	249.7 ± 49.8	0.337	236.2 ± 39.7	235.6 ± 41.3	244.9 ± 45.7	231.6 ± 38.0	236.8 ± 41.3	0.731	

The values are mean ± SD. P-value for trend: *P < 0.05, **P < 0.01. $\frac{1}{2}$ -test was used for statistical analysis. BMI, body mass index; %E, percentage of total energy intake; HbA1c, glycated haemoglobin A1c, HD1, high-density lipoprotein; LDL, low-density lipoprotein.

[Method]

1. 1,173 Type 2 diabetes, Japan

[Objective]

: clarify the correlation between the PFC energy ratio and glycated hemoglobin A1c (HbA1c) [Result]

: the four quartiles divided by HbA1c levels, there were no significant differences

in carbohydrate ratio.

Meta Kirk et al, J Am Diet Assoc, 2008;108(1):91-100 10 20 0 10 % Change in blood glucose % Change in HbA1c -10 0 m -20 -10 -30 -20 %∆Gluc = -30.0 + 0.45×(%Carb Cal) P value = 0.013 % HbA1c = -23.6 + 0.44×(%Carb Cal P value = 0.013 -40 -30 n % Carbohydrate calories % Carbohydrate calories

Figure 2. Scatter plots of percent change in blood glucose and hemoglobin A1c (HbA1c) vs percent daily caloric intake from carbohydrates. The lowercase letters correspond to the following studies (first author, year [reference number]): a=Gannon, 2003 (20); b=Gannon, 2004 (21); c=Garg, 1988 (22); d=Garg, 1992 (23); e=Garg, 1994 (24); f=Gerhard, 2004 (25); g=McCargar, 1998 (26); h=Sargrad, 2005 (27); i=Samaha, 2003 (28); j=Gumbiner, 1998 (29); k=Boden, 2005 (30); I=Gutierrez, 1998 (31); m=Yancy, 2005 (32). (Information from this figure is available online at www.adajournal.org as part of a PowerPoint presentation.)

[Method]

1. 13 RCT+two-arm&single-arm trials, 2. Type 2 diabetes

[Objective]

: to evaluate the effects of carbohydrate in diabetes pt. to control blood glucose [Result]

: show that <u>hemoglobin A1c, fasting glucose improved</u> with lower carbohydrate-content diets

Meta

	AIC	FPG	2-h glucose	Fasting insulin	2-h fasting insulin	Total cholesterol	Triglycerides	HDL cholesterol	LDL cholesterol
Trials (n)	10	22	10	22	9	20	22	20	16
Overall percent change	-1.5	0.3	10.3	8.4	12.8	1.6	13.4	-5.6	0.1
95% CI	-5.3 to 2.3	-2.8 to 3.4	6.7-13.9	1.3-15.6	5.2-20.4	-1.3 to 4.5	7.1-19.8	-8.4 to -2.9	-3.8 to 4.1
Р	0.70	0.87	< 0.001	0.02	< 0.001	0.27	< 0.001	< 0.001	0.94
Publication bias									
Begg's	0.80	0.82	0.25	0.30	0.40	0.85	0.48	0.75	0.86
Egger's	0.47	0.30	0.12	0.13	0.16	0.26	0.75	0.08	0.92
Trim and fill									
Fill*								7	
Adjusted [†]								-7.6	
95% CI								-10.2 to -5.0	

Table 2—Overall percent changes resulting from LFHC versus HFLC diet on metabolic profiles and data on publication bias and their likely effect on the estimates

*Studies (n) added by the trim-and-fill method. *Percent change after adjustment for publication bias by the trim-and-fill method. Begg's, Begg's adjusted rank correlation test; Egger's, Egger's regression asymmetry test.

Kodama et al, Diabetes Care,2009;32(5):959-65

[Method]

1. 15 randomized trials, 2. Type 2 diabetes, 4. LFHC(58/24/20), HFLC(40/40/20) [Objective]

: to elucidate the effect of replacing dietary fat with carbohydrate

[Result]

1. A1C, FPG not differ significantly

2. the LFHC diet significantly increased fasting insulin compared with the HFLC diet

Ajala et al, Am J Clin Nutr, 2013;97:505–16

Difference in low carbohydrate vs. 'other' diets. 'Other' diets compared were low fat (Samaha [32], Haimoto [8], Davis [7] and Iqbal [43), Low GI (Westman [42] and Wolever-1[38]), Mediterranean (Elhayany-1[37]) and conventional high CHO (Stern [33])

Wolever-1 [38] is the comparison between the low-CHO and low-GI arms of the study.

Elhayany-1 [37] is the comparison between the traditional Mediterranean and low-CHO arms of the study.

[Method]
1. 9 RCTs with interventions lasted 6≥ mo, 2. Type 2 diabetes
[Objective]
: assessed the effect of low-carbohydrate diet on glycemic control
[Result]
: Meta-regression analyses show that <u>hemoglobin A1c improved with lower</u>
carbohydrate-content diets [-0.12%(P=0.04)]

Meta

Q. Adequate carbohydrate distribution(amount) ?

Difficulty, 1) confounding factors : wt.loss, medication change
2) altering the level of one macronutrient affects the proportion of other macronutrients
3) the lack of standardized definition for "low carbohydrate diet"

Conclusion, 1) the ideal carbohydrate distribution(amount) is confusing

2) so, carbohydrate intake should be individualized but, free carbohydrate intake is not a right solution

D. High CHO diet is a good marker of compliant pt.

- Korean vs Western?

Crosssectional

TABLE 3

Adjusted odds ratios (ORs) (and 95% CIs) of poor or good glycemic control between higher sex-specific quintiles and the lowest quintile (Q) of macronutrient intake¹

	Q1 (Ref)	Q2	Q3	Q4	Q5	P for trend
Carbohydrate (% of energy)						
Men	≤36.2	36.3-42.5	42.6-49.7	49.8-56.7	>56.7	
Women	<38.7	38.8-46.7	46.8-52.7	52.8-59.9	>59.9	
OR ²	1	0.60 (0.38, 0.95)	0.57 (0.36, 0.90)	0.60 (0.38, 0.95)	0.44 (0.28, 0.69)	0.0008
OR ³	1	0.55 (0.33, 0.90)	0.52 (0.31, 0.85)	0.54 (0.33, 0.89)	0.43 (0.26, 0.71)	0.003

Xu et al. Am J Clin Nutr 2013;86:480-487

[Method]

1. 1,284 diabetic American Indians

[Objective]

: to examine the cross sectional association between macronutrient intake and HbA1c [Result]

: lower carbohydrate intake were associated with poor glycemic control

For men, the percentage of kcals from carbohydrate between 1971~1974 and 1999~2000, from 42.4%

In USA

to 49.0%. And for women, from 45.4% to 51.6%

Figure 2. Percentage of kilocalories from macronutrient intake among men (top) and women (bottom) aged 20-74 (age-adjusted), by survey years. Data from National Health and Nutrition Examination (NHANES), United States, 1971-2000.⁹

Hite et al, Nutr Clin Pract, 2011;26:300-308

1988-1990 1991-1994 1999-2000 2001-2002 2003-2004 Figure 1. Macronutrient intake as a percentage of total energy among all respondents with self-reported diabetes in a 24-hour recall from the National Health and Nutrition Examination Survey (NHANES) III (Phase I: 1988-1990 and Phase II: 1991-1994) to NHANES 2003-2004. The percentages were calculated from the predicted marginals from weighted regression models that included respondents with complete covariate information (n=1,404). Predicted marginals were derived from regression models with each variable as a continuous outcome; independent variables were sex and age (in all models), total energy, and survey (NHANES III Phase I, NHANES III Phase II, NHANES 1999-2000, NHANES 2001-2002, or NHANES 2003-2004) as trend. NOTE: This figure is available online at www.adajournal.org as part of a PowerPoint presentation.

Oza-frank R et al, J Am Diet Assoc, 2009;109: 1173-1178

In USA, DM Pt.

the percentage of kcals from carbohydrate between 1988~1990 and 2003~2004, from 43.1% to 45.7%

Historical period	Author/title	Type of diet
1550 вс	Ebers Papyrus	Rich in carbohydrates such as wheat, grains,
AD 128-200	Galen	Sun-dried membranes from young roosters' abdomen or drinks made of a mixture of mountain copper, dry acorn, flower of the wild nomegranate, oak gall, honey of roses and cold water
980-1037	Avicenna	Rich in Jupin, fenugreek and zedoary
1621-75	Thomas Willis	Milk and barley-water boiled with bread
1799	John Rollo	1500-calorie diet, low in carbohydrates and high in fat and protein, based on rancid meat and blood pudding
Beginning of the 20th century	Allen, Joslin	Very low-calorie diet, called the 'starvation diet', high in protein and fat and low in carbohydrates. Contained 70% fat, 10% carbohydrate, 20% protein
1940s	American Diabetes Association	 Carbohydrate content of 40%
1950	American Diabetes Association	Normal quantity of calories, comprise 43% carbohydrate, 19% protein, 37% fat
1971	American Diabetes Association	45% or more carbohydrate
1979	American Diabetes Association	50-60% carbohydrate, 12-20% protein, 20-30% fat
1986	American Diabetes Association	55–60% carbohydrate, 0.8 g/kg protein, total fat <30%
1994	American Diabetes Association	10–20% protein, <10% from saturated fat
2008	American Diabetes Association	130 g/day carbohydrate, 14 g fibre/1000 kcal, cholesterol <200 mg/day, 20% protein

Table 1. Timeline of diets for treating diabetes mellitus

Diabetes Metab Res Rev 2014;30(Suppl. 1): 24–33

Nutrients	Intake	P*	Recommended dietary intake [†]	% Less than recommendation	% Meeting recommendation	% Above recommendation	Р‡
Energy (kcal/day) Men Women	$1,757.5 \pm 423.2$ $1,870.7 \pm 403.5$ $1,615.4 \pm 404.3$	< 0.001					
Protein (% energy) Men Women	17.3 ± 3.4 17.6 ± 3.2 16.9 ± 3.5	< 0.001	15-20	24.2 19.9 29.5	58.5 61.9 54.3	17.3 18.2 16.1	< 0.001
Fat (% energy) Men Women	21.9 ± 7.3 22.8 ± 7.2 20.7 ± 7.3	< 0.001	≤ 25		68.8 65.0 73.7	31.2 35.0 26.3	< 0.001
Carbohydrate (% energy) Men Women	60.9 ± 8.9 59.6 ± 8.6 62.4 ± 9.2	< 0.001	50-60	10.6 12.5 8.2	35.3 38.7 31.0	54.1 48.8 60.8	< 0.001
Dietary fiber (g/1,000 kcal) Men Women	15.5 ± 4.8 14.7 ± 4.6 16.4 ± 4.9	< 0.001	≥ 12	24.7 30.1 17.8	75.3 69.9 82.2		< 0.001
Saturated FA (% energy) Men Women	3.5 ± 2.7 3.7 ± 2.8 3.3 ± 2.4	< 0.001	≤7		91.5 90.6 92.6	8.5 9.4 7.4	0.08
Cholesterol (mg) Men Women	258.3 ± 187.9 288.2 ± 198.5 221.0 ± 166.4	< 0.001	≤ 200		46.4 39.7 54.9	53.6 60.3 45.1	< 0.001

Table 1. Dietary nutrient intake and overall percentage of KNDP participants meeting recommendation

Data are mean \pm SD and percent unless otherwise indicated. FA, fatty acids. **P* value obtained by the Student t test or Mann-Whitney U test as appropriate for comparison of nutrient intake between men and women; [†]Recommended dietary intake adapted from the 2011 Treatment Guideline for Diabetes of the Korean Diabetes Association (14); [†]*P* value obtained by chi-squared test to compare the rate of achievement of recommendation for each nutrient between men and women.

Kim et al, J Korean Med Sci. 2012;27:1188-1195

In Korea, DM Pt.

[Method]

1. cross-sectional study of 2,832 type 2 diabetic patients from the Korean National Diabetes Program cohort

2. 24 hr dietary recall questionnaire

Historical period	Author/title	Type of diet
1550 вс	Ebers Papyrus	Rich in carbohydrates such as wheat, grains,
AD 128-200	Galen	Sun-dried membranes from young roosters' abdomen or drinks made of a mixture of mountain copper, dry acorn, flower of the wild pomegranate, oak gall, honey of roses and cold water
980-1037	Avicenna	Rich in lupin, fenugreek and zedoary
1621-75	Thomas Willis	Milk and barley-water boiled with bread
1799	John Rollo	1500-calorie diet, low in carbohydrates and high in fat and protein, based on rancid meat and blood pudding
Beginning of the 20th century	Allen, Joslin	Very low-calorie diet, called the 'starvation diet', high in protein and fat and low in carbohydrates. Contained 70% fat, 10% carbohydrate, 20% protein
1940s	American Diabetes Association	Carbohydrate content of 40%
1950	American Diabetes Association	Normal quantity of calories, comprise 43% carbohydrate, 19% protein, 37% fat
1971	American Diabetes Association	45% or more carbohydrate
1979	American Diabetes Association	50-60% carbohydrate, 12-20% protein, 20-30% fat
1986	American Diabetes Association	55–60% carbohydrate, 0.8 g/kg protein, total fat <30%
1994	American Diabetes Association	10–20% protein, <10% from saturated fat
2008	American Diabetes Association	130 g/day carbohydrate, 14 g fibre/1000 kcal, cholesterol <200 mg/day, 20% protein

Table 1. Timeline of diets for treating diabetes mellitus

Diabetes Metab Res Rev 2014;30(Suppl. 1): 24–33

D. Carbohydrate quality?

- Glycemic index, Dietary fiber ..etc

FIGURE 1. Glycated hemoglobin (HB A_{1c}) values for all participants (n = 49 vegan diet; n = 50 conventional diet). The mean (±SD) data shown are last values before any change to diabetes medications carried forward. *t* Test for between-group comparison of changes from baseline to final values, P = 0.03.

Barnard et al, Am J Clin Nutr. 2009 May;89(5):1588S-1596S

RCT

[Method] 1. 83 Type 2 diabetes, USA, 74wks 2. Vegan: <u>66.3%</u> carbohydrates, 22.3% fat, 14.8% protein Conventional: <u>46.5%</u> carbohydrates, 33.7% fat, 21.1% protein

[Result]

: HbA1c changes from baseline to 74 wk before any medication adjustment were -0.40 and 0.01 in vegan and conventional diet groups, respectively (P < 0.03)

	Standards of Medical Care in Diabetes—2015	
	Substituting low glycemic load foods for higher glycemic load foods <u>may modestly improve</u> glycemic control.	С
Eating patterns and macronutrient distribution	Individuals at <u>high risk for type 2 diabetes</u> should be encouraged to achieve the U.S. Department of Agriculture recommendation for dietary fiber (14 g fiber/1,000 kcal) and to consume foods containing whole grains (one-half of grain intake).	В

Possible mechanisms of action of dietary fiber and low glycemic index foods

Glycemic index : 50 g의 탄수화물을 포함하고 있는 식품을 섭취한 후 2시간 동안의 혈당 반응 곡선의 면적을 50 g의 탄수화물을 포함하고 있는 포도당이나 흰빵을 섭취했을 때 와 비교하여 백분율로 표시한 값

Glycemic load : Glycemic index에 <u>양적</u> 개념을 더한 것으로 식품의 1회 섭취 분량 에 함유되어 있는 탄수화물양을 고려하여 혈당반응을 계산한 지표

RCT

Table 3. Mean Study Measurements and Significance of Treatment Differences for Modified Intention-to-Treat Analysis in 121 Participants^a

70	Mean (95% CI)								
	High Whea	t Fiber Diet	Low-GI le	egume Diet					
Characteristic	Baseline (n = 61)	End of Study $(n = 61)^b$	Baseline (n = 60)	End of Study (n = 60) ^b	P Value ⁰				
Body weight, kg Waist, cm	82.5 (78.0-87.0) 103.7 (100.2-107.3)	80.5 (76.2-84.8) ^a 102.4 (98.9-105.9) ^a	85.6 (80.4-90.9) 106.7 (102.7-110.7)	83.0 (77.9-88.0) ^d 104.3 (100.2-108.3) ^d	.002				
HbAte value, % of total hemoglobin	7.2 (7.1-7.4)	6.9 (6.8-7.0) ^a	7.4 (7.2-7.5)	6.9 (6.7-7.0) ^d	<.001				
Fasting glucose level, mg/dL	134 (127-141)	127 (121-133) ^a	141 (135-147)	132 (126-138) ^d	.001				
TC level, mg/dL	163 (151-174)	161 (150-172)	158 (147-168)	149 (139-160)d	.005				
LDL-C level, mg/dL	91 (81-101)	90 (81-99)	84 (77-92)	81 (74-89)	.16				
HDL-C level, mg/dL	47 (44-50)	48 (45-52) ^a	43 (40-46)	43 (40-45)	<.001				
Triglyceride level, mg/dL	124 (104-145)	115 (96-133) ^a	149 (125-173)	128 (107-148) ^d	.03				
TC/HDL-C	3.57 (3.35-3.79)	3.45 (3.22-3.67) ^a	3.75 (3.50-4.00)	3.61 (3.35-3.86) ^d	.46				
LDL-C/HDL-C	1.98 (1.80-2.16)	1.91 (1.73-2.09)	1.99 (1.82-2.15)	1.96 (1.78-2.14)	.86				
Systolic BP, mm Hg	118 (115-122)	118 (115-121)	122 (119-124)	118 (115-120)d	<.001				
Diastolic BP, mm Hg	70 (67-72)	70 (67-72)	72 (70-74)	69 (67-71) ^d	<.001				
Heart rate, bpm	72.4 (69.7-75.1)	71.8 (69.1-74.6)	74.1 (70.8-77.4)	70.7 (67.4-73.9) ^d	<.001				
Absolute CHD risk, 10 ye	10.4 (9.3-11.4)	9.9 (8.8-10.9) ^a	10.7 (9.2-12.1)	9.6 (8.3-10.9) ^d	.003				
Relative CHD risk [†]	1.3 (1.1-1.4)	1.2 (1.1-1.3) ^a	1.5 (1.2-1.9)	1.4 (1.0-1.7) ^d	.27				

Jenkins et al. Arch Intern Med. 2012;172(21):1653-1660

[Method]

1. 121 T2DM, Toronto

- 2. High Wheat
- Fiber Diet(GI=82),
- Low-GI Legume
- Diet group(GI=66)

3. 3 months, 7-day food records

[Result]

1. The relative reduction in HbA1c after the <u>low-GI</u> <u>legume diet was greater</u> <u>than after the high wheat</u> <u>fiber diet by -0.2%</u>

Meta

Mean difference Low-GI diet Control diet Mean difference Study or subgroup Mean SD Total Mean SD Total Weight (%) (IV, fixed) 95 % CI (IV, fixed) 95 % CI Brand et al.⁽²²⁾ -0.90 -1.92, 0.12 7 0.6 16 7.9 2 16 6.5 Giacco et al.(26) 8.8 1 29 9.1 1.3 25 17.3 -0.30 -0.93, 0.33 Komindr et al.(30) -0.18 -1.76, 1.40 10.97 1.55 10 11.15 2.02 10 2.7 Gilbertson et al.(27) -0.60 8 1 51 8.6 1.4 38 24.8 -1.12, -0.08 Jimenez-Cruz et al.(28) -0.50 -1.17, 0.17 8.1 0.9 8.6 0.9 15.3 14 14 Rizkalla et al.(31) -0.40 7.17 1.35 7.57 1.21 12 6.5 12 -1.43, 0.63 Jenkins et al.⁽³³⁾ 6.64 1.65 106 6.89 2.04104 -0.25 26.9 -0.75, 0.25 Total (95 % CI) 238 219 100.0 -0.43 -0.69, -0.17 Heterogeneity: $\chi^2 = 2.02$, df = 6 (P = 0.92); $I^2 = 0$ %. Test for overall effect: Z = 3.26 (P = 0.001). -2 -1 0 2 1 Favours low-GI diet Favours control diet

Fig. 2. Change in glycated Hb (% HbA1c) in people with diabetes on low-glycaemic index (GI) diet compared with that in people with diabetes on high-GI or other diet.

[Method]

1. 7 randomized controlled trials at least 4 weeks, 2. type 1 or type 2 diabetes

[Result]

1. significant decrease in HbA1c(-0.43%) with low-GI diet than with the control diet

Thomas et al, Br J Nutr 2010;104:797-802

Meta

Ajala et al. Am J Clin Nutr 2013;97:505-16

Difference in low-GI vs. 'other' diets. 'Other' diets compared were high fiber (Jenkins [35]), high GI (Wolever-2 [38]), ADA (Ma [39]). Wolever-2 [38] is the comparison between the low-GI and high-GI arms of the study.

[Method]

1. 3 randomized controlled trials at least 6 month, 2. type 2 diabetes [Objective]

[Result]

1. <u>-0.14% decrease in HbA1c in subjects who consumed low-GI</u> compared with control diets

2015 ADA		2011 ADA	
Substituting low glycemic load foods for higher glycemic load foods may modestly improve glycemic control.	С	For individuals with diabetes, the use of the glycemic index and glycemic load may provide a modest additional benefit for glycemic control over that observed when total carbohydrate is considered alone.	В

Glycemic index or Glycemic load??

Nutrition & Metabolism 2012, 9:79

Glycemic index or Glycemic load??

Table 2. Multivariate-adjusted ORs (95% CI) of elevated fasting serum glucose (> 130 mg/dl) and HbA 1c (> 8.6%) according to quartile categories of glycemic load and glycemic index, carbohydrate and fiber intakes

			FSG		HbA1c					
			Quartile of intake		Prend			Quartile of intake		Ptrend
Glycemic load	200000052	5 5 8 9 1 5 5 7 M 1 6 7 5 1		1475277721-7		93686-2		8000 40000000000	3422-3535-3	
Range of index	<129.6	129.6-171.2	171.3-212.0	> 212.0		<129.6	129.6-171.2	171.3-212.0	>212.0	
No. of cases with hyperglycemia	102	100	119	119		90	97	96	95	
Age-, sex- and energy-adjusted model ^b	1	1.01 (0.62-1.67)	1.97 (1.07-3.61)	2.20 (0.97-5.01)	0.03	1	1.41 (0.87-2.29)	1.73 (0.99-3.03)	2.29 (1.07-4.89)	0.03
Multivariable-adjusted model 1 ^c	1	1.09 (0.64-1.85)	2.15 (1.13-4.08)	2.58 (1.08-6.15)	0.02	1	1.52 (0.89-2.58)	2.07 (1.12-3.83)	3.05 (1.33-7.03)	0.008
Multivariable-adjusted model 2 ^d	1	1.15 (0.67-1.97)	2.42 (1.26-4.67)	3.00 (1.22-7.33)	0.007	1	1.67 (0.98-2.84)	2.42 (1.29-4.54)	3.94 (1.66-9.31)	0.002
Slycemic index										
Range of index	< 54.1	54.1-58.7	58.8-63.5	>63.5		< 54.1	54.1-58.7	58.8-63.5	>63.5	
No. of cases with hyperglycemia	105	109	113	113		89	98	96	95	
Age-, sex-, and energy-adjusted model ^b	1	1.16 (0.72-1.86)	1.25 (0.78-2.02)	1.18 (0.72-1.92)	0.46	1	1.28 (0.81-2.01)	1.27 (0.81-2.00)	1.30 (0.82-2.05)	0.28
Multivariable-adjusted model 1 ^c	1	1.30 (0.78-2.16)	1.38 (0.83-2.29)	1.41 (0.84-2.38)	0.19	1	1.43 (0.87-2.40)	1.39 (0.85-2.28)	1.42 (0.86-2.35)	0.20
Multivariable-adjusted model 2 ^d	1	1.32 (0.79-2.21)	1.34 (0.80-2.25)	1.31 (0.75-2.26)	0.33	1	1.51 (0.91-2.50)	1.45 (0.88-2.39)	1.52 (0.90-2.59)	0.14
Carbohydrate										
Range of intake (% energy)	< 50.4	50.4-55.5	55.6 60.3	>60.3		< 50.4	50.4-55.5	55.6-60.3	>60.3	
No. of cases with hyperglycemia	106	107	116	111		78	100	100	100	
Age-, sex- and energy-adjusted model ^b	1	1.11 (0.69-1.78)	1.44 (0.88-2.34)	1.26 (0.78-2.05)	0.23	1	1.76 (1.12-2.76)	1.76 (1.12-2.77)	1.74 (1.10-2.75)	0.02
Multivariable-adjusted model 1e	1	112 (068-187)	1 54 (0.91-2.59)	1 47 (0.86-2.51)	0.09	1	1 94 (1 18-3 18)	2.08 (1.26-3.44)	7 77 (1 35-3 83)	0.00
Multivariable-adjusted model 2 ^d	i	1.13 (0.68-1.87)	1.54 (0.91-2.59)	1.47 (0.86-2.51)	0.09	i	1.91 (1.16-3.14)	2.10 (1.27-3.46)	2.32 (1.37-3.92)	0.00
iber										
Range of intake (g)	<175	175-23.0	23 1-30 2	> 30.2		<175	175-23.0	231-302	> 30.2	
No. of cases with hyperplycemia	115	113	101	111		99	106	83	90	
Age- sex- and energy-adjusted model ^b	1	0.82 (0.50-1.35)	0.51 (0.30-0.85)	0.53 (0.29-0.96)	0.02	1	1.17 (0.73-1.87)	0.63 (0.39-1.02)	0.72 (0.41-1.25)	0.12
Multivariable-adjusted model 1 ^c	1	0.76 (0.45-1.30)	0.52 (0.30-0.92)	0.53 (0.28-0.99)	0.04		1.14 (0.68-1.89)	0.70 (0.41-1.19)	0.81 (0.44-1.50)	0.36
Workivariable adjusted model i		0.70 (0.45-1.50)	0.52 (0.50 0.52)	0.00 (0.20-0.00)	0.04		1.14 (0.00-1.03)	0.70 (0.41-1.13)	0.01 (0.11 1.30)	0.50

Crosssectional

Eur J Clin Nutr 2014;68:459-63

[Method]

1. 640 type 2 diabetic patients aged 28–75 years, Tehran

[Result]

1. for the highest vs the lowest quartile of GL was 2.58 for elevated FSG and was 3.05 for elevated HbA1c

2. <u>GI was not significantly associated</u> with either elevated FSG or HbA1c

yes or no) and lipid-lowering drug (yes or no). ^dMultivariable adjusted model 1 further adjusted for protein intake (% energy) and fiber intake (g). *Same as (c) in addition to fiber intake (g).

 \cdot Conclusion

1. ADA 권고 대로, 당지수가 아닌 당부하지수의 개념으로

식품의 생산지, 조리 방법, 함께 섭취하는 식품,
 또 환자 개별적 특성에 따라 결과가 달라질 수 있는
 당부하지수의 태생적 한계

Dietary fiber

Table 1. Components of dietary fiber according to the American Association of Cereal

 Chemists [22].

Non Starch Polysaccharides and Oligosaccharides
Cellulose
Hemicellulose
Arabinoxylans
Arabinogalactans
Polyfructoses
Inulin
Oligofructans
Galacto-oligosaccharides
Gums
Mucilages
Pectins
Analagous carbohydrates
Indigestible dextrins
Resistant maltodextrins
Resistant potato dextrins
Synthesized carbohydrates compounds
Polydextrose
Methyl cellulose
Hydroxypropylmethyl cellulose
Resistant starches
Lignin substances associated with the NSP and lignin complex
Waxes
Phytate
Cutin
Saponins
Suberin
Tannin

R Crossover

 TABLE 3. METABOLIC VARIABLES DURING THE LAST WEEK OF THE STUDY PERIODS (DAYS 38 THROUGH 42).*

VARIABLE	ADA DIET	High-Fiber Diet	DIFFERENCE BETWEEN DIETS (95% CI)	P VALUET
Energy intake (kcal/day)	2308±236	2308±236		1.00
Weight (kg)	$90.7 {\pm} 13.3$	90.5 ± 12.7	-0.2 (-1.1 to 0.6)	0.60
Dose of glyburide (mg/day)	10.0 ± 8.7	10.0 ± 8.7	-	1.00
Plasma glucose (mg/deciliter)‡	142 ± 36	130 ± 38	-13 (-24 to -1)	0.04
Urinary glucose (g/day) Mean Median§	2.3±4.3 0.76	1.0±1.9 0.0	-0.23 (-1.83 to -0.03)	0.008
Glycosylated hemoglobin (%)	7.2 ± 1.3	6.9 ± 1.2	-0.3 (-0.6 to 0.1)	0.09

*Plus-minus values are means ±SD. ADA denotes American Diabetes Association, and CI confidence interval.

[†]An analysis of variance was used to compare the two diets, except for urinary glucose, for which the Wilcoxon signed-rank test was used.

‡The values are averages of plasma glucose concentrations measured at 7 and 11 a.m. and at 4 and 8 p.m. each day for five days during hospitalization. To convert values for plasma glucose to millimoles per liter, multiply by 0.056.

§The values are averages of five daily urine collections during hospitalization.

N Engl J Med 2000;342:1392-8

[Method]

1. randomized crossover study,

2. ADA diet = total 24 g; 8 g of soluble fiber and 16 g of insoluble fiber

High-fiber diet = total 50 g; 25 g of soluble fiber and 25 g of insoluble fiber

3. 6 weeks

[Result]

 The mean plasma glucose was <u>lower when patients completed the</u> <u>high-fiber diet</u> than when they completed the ADA diet
 But, not in HbA1c

B

Table 2—Metabolic parameters at the end of the study in type 1 diabetic patients by intention-to-treat analysis or after the exclusion of noncompliant individuals

		Intentio	on to treat		Compliant to diet			
	LF	Δ (%)	ΗF	Δ (%)	LF	Δ (%)	ΗF	Δ (%)
n	25	-	29	-	22	2 	24	
HbA _{lc} (%)	9.1 ± 1.3	3.4	8.8 ± 1.0	0	9.1 ± 1.4	5.8	8.6 ± 0.9*	-2.0
Mean daily plasma glucose (mmol/l)	14.5 ± 4.5	-6.5	11.8 ± 3.3*	-9.0	14.7 ± 4.1	0	11.2 ± 2.9†	-15.0
Triglyceride (mmol/l)	0.87 ± 0.28	0.8	0.86 ± 0.44	-0.4	0.86 ± 0.30	3.5	0.90 ± 0.48	0
Cholesterol (mmol/l)	5.1 ± 1.2	4.0	4.7 ± 0.9	0	5.0 ± 1.3	3.0	4.7 ± 0.8	-0.6
HDL cholesterol (mmol/l)	1.4 ± 0.4	2.8	1.5 ± 0.3	0.8	1.4 ± 0.4	2.0	1.5 ± 0.4	0
Hypoglycemic events ($n \cdot \text{patient}^{-1} \cdot \text{mon}$	th ⁻¹) 1.5 ± 1.2		$0.7 \pm 0.7^{+}$		1.7 ± 1.2	8	0.8 ± 0.7†	
Body weight (kg)	65.5 ± 10.9	0.9	66.7 ± 10.2	0.9	64 ± 11	0.5	67 ± 11	1.1
Insulin dose (U/day)	42.1 ± 12.7	-1.4	47.6 ± 16.5	-0.6	43.7 ± 12.3	-8.0	48.4 ± 16.6	1.7

Data are means ± SD, unless otherwise indicated. $\dagger P < 0.05$; **P < 0.01. Δ (%), change from baseline.

Giacco et al. Diabetes Care 23:1461-1466, 2000

[Method]

- 1. 63 type 1 diabetic patients, Naples
- 2. High fiber(HF) diet = 39.1g/dLow fiber(LF) diet = 15.0g/d
- 3. 24 weeks, 7-day food records

[Result]

1. HbA1c was <u>significantly lower</u> after the HF diet than after the LF diet Meta

Figure 3. Forest plot for glycosylated hemoglobin.

	F	iber		Co	ontro	I .		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Karlander 1991	6.9	1.3	5	7	1.8	5	1.6%	-0.10 [-2.05, 1.85]	
Ziai 2005	8.9	0.9	21	10.5	2.3	15	4.1%	-1.60 [-2.83, -0.37]	
Cho 2005	7.3	1.2	15	8.3	1.9	15	4.8%	-1.00 [-2.14, 0.14]	
Uusitupa 1989	8.4	1.2	20	9.4	1.9	19	6.2%	-1.00 [-2.00, 0.00]	
Holman 1987	8.1	2	29	7.9	1.8	29	6.5%	0.20 [-0.78, 1.18]	
Chandalia 2000	6.9	1.2	13	7.2	1.3	13	6.7%	-0.30 [-1.26, 0.66]	
Feldheim 2003	5.2	0.5	11	5.4	1	8	10.9%	-0.20 [-0.95, 0.55]	
Jenkins 2002	7.2	1	23	7.4	1.4	23	12.5%	-0.20 [-0.90, 0.50]	
Chuang 1992	6.9	0.8	16	7.2	0.8	16	20.2%	-0.30 [-0.85, 0.25]	-=+
Hagander 1988	5.3	0.6	14	5.2	0.7	14	26.6%	0.10 [-0.38, 0.58]	
Total (95% CI)			167			157	100.0%	-0.26 [-0.51, -0.02]	▲
Heterogeneity: Chi ² =	11.39, df	f = 9	(P = 0.2	25); I² =	21%				
Test for overall effect:	Z = 2.09	(P =	0.04)					Fa	vours experimental Favours control

Post et al. Am Board Fam Med 2012;25:16 –23

[Method] 1. 10 randomized trials, 2. type 2 diabetes

[Result]

1. fiber intervention was more effective on HbA1c than placebo, with an overall reduction in HbA1c by fiber of 0.26%

Figure 4 Forest plot diagram of the effect of fiber intake on HbA1c.

Silva et al. Nutrition Reviews (2013):71(12):790-801

[Method]

- 1. 11 randomized controlled trials
- 2. patients with diabetes

[Result]

1. HbA1c absolute values <u>decreased</u> <u>by 0.55%</u> in patients who consumed high-fiber diets as compared to control diets

Table 1. Dietary nutrient intake and	d overall percentage of KNDP _b	~	z7.zy/u				
Nutrients	Intake			.nan recommendation	% Meeting recommendation	% Above recommendation	P‡
Energy (kcal/day) Men Women	1,757.5 ± 423.2 1,870.7 ± 403.5 1,615.4 ± 404.3	< 0.001					
Protein (% energy) Men Women	17.3 ± 3.4 17.6 ± 3.2 16.9 ± 3.5	< 0.001	15-20	24.2 19.9 29.5	58.5 61.9 54.3	17.3 18.2 16.1	< 0.001
Fat (% energy) Men Women	21.9 ± 7.3 22.8 ± 7.2 20.7 ± 7.3	< 0.001	≤ 25		68.8 65.0 73.7	31.2 35.0 26.3	< 0.001
Carbohydrate (% energy) Men Women	60.9 ± 8.9 59.6 ± 8.6 62.4 ± 9.2	< 0.001	50-60	10.6 12.5 8.2	35.3 38.7 31.0	54.1 48.8 60.8	< 0.001
Dietary fiber (g/1,000 kcal) Men Women	15.5 ± 4.8 14.7 ± 4.6 16.4 ± 4.9	< 0.001	≥ 12	24.7 30.1 17.8	75.3 69.9 82.2		< 0.001
Saturated FA (% energy) Men Women	3.5 ± 2.7 3.7 ± 2.8 3.3 ± 2.4	< 0.001	≤7		91.5 90.6 92.6	8.5 9.4 7.4	0.08
Cholesterol (mg) Men Women	258.3 ± 187.9 288.2 ± 198.5 221.0 ± 166.4	< <u>0.001</u>	≤ 200		46.4 39.7 54.9	53.6 60.3 45.1	< 0.001

27 2014

Data are mean ± SD and percent unless otherwise indicated. FA, fatty acids. * P value obtained by the Student t test or Mann-Whitney U test as appropriate for comparison of nutrient intake between men and women; *Recommended dietary intake adapted from the 2011 Treatment Guideline for Diabetes of the Korean Diabetes Association (14); ⁺P value obtained by chi-squared test to compare the rate of achievement of recommendation for each nutrient between men and women.

Kim et al, J Korean Med Sci. 2012;27:1188-1195

In Korea

\cdot Conclusion

- 1. 현실적인 식이섬유소 섭취량을 고려하면 보충제로 12~23g/d 추가 섭취가 필요
- 하지만 굳이 보충제로 식이섬유소를 추가 섭취해야 할 정도로
 고식이섬유소 섭취가 혈당 조절에 확실히 효과가 있는지 불명확함

Home Take Message

1. 이상적인 탄수화물 섭취%(대량영양소 섭취%) 근거는 없음

2. 탄수화물의 질(glycemic load, 식이섬유소) 또한 위의 부재를 완벽하게 보완해주지 못함

5. 탄수화물 섭취가 특히 많은 한국인은 서양 데이터 기준
 으로 특이 케이스임

4. 한국인을 대상으로 한 RCT 연구가 필요함