Epidemiology of NAFLD

순천향 대학교 부천병원 소화기내과 김 상 균

- 30/M, alcohol (-)
- C/C: easy fatigue, elevated liver enzyme

Lab findings

- BMI : 23.4 kg/m²
- AST/ALT : 44/144 IU/L
- Albumin : 3.9 g/dl
- Glucose : 121 mg/dL
- Fasting insulin : 32.84 µIU/mL (2~25)
- Viral marker : all negative
- Fibroscan : stiffness 3.9kPa, CAP score-295

What is the next step in the patient?

- 1) Calculate NAFLD firbosis score
- 2) Vit E or UDCA
- 3) Life style modification
- 4) Liver biopsy
- 5) Refer to hepatologist

Liver biopsy findings

Gr 2 steatosis, Hepatocyte ballooning, mild inflammation, perisinusoidal fibrosis 를 동반한 NASH

What are the challenges in NAFLD?

- 1) Where are the patients?
- 2) Which patients to treat?
- 3) Biomarkers to identify patients and guide treatment (static marker for dynamic disease)
- 4) How long to treat?
- 5) A symptomatic patients

Content

- Epidemiology
- Incidence and prevalence
- Population based study
- Non-obese NAFLD
- Natural course and clinical outcome

Epidemiology

"It is much more important to know what sort of a patient has a disease than what sort of disease a patient has." - Sir William Osler-

Prevalence vs. Incidence

Point Prevalence = (ratio)			Number of cases of disease present in the population on a given day					
		-	Number of persons in the population on the given day					
Incidence rate			Number of new cases of a disease occurring in the population during a specified period					
(density)		= -	Number of persons at risk of developing disease during that period (person-years a	the at risk)				
	 Pre Inc 	evale Logi cide	ence study = Cross-sectional design, stic regression, Chi-square analysis nce study = Cohort design,					
	-	Time	e dependent analysis					

Prevalence vs. incidence

Prevalence = Incidence x Average duration

Incidence of NAFLD

Author	Publication Year	Country	Age of Cohort at Baseline	Sex (% male)	Diagnosis Technique	Mean Follow- up Time (yrs.)	Number followed	Number of incident NAFLD cases	Unadjusted Incidence (/1000 person- years)
Hamaguchi ³¹	2005	Japan	47.6	58.40%	Ultrasound	1.13	3147	308	87
Suzuki ⁴²	2005	Japan	35	73.20%	Blood Test (ALT >40 U/L and/or AST >35 U/L)	5	529	71	27
Wong ⁹	2015	China	48	37.30%	MRS	3.9	565	76	34
Zelber-Sagi ⁶⁴	2014	Israel	51	47.60%	Ultrasound	6.8	147	28	28
Zhou ¹⁰³	2012	China	_	_	Ultrasound and Blood Test (ALT and/or AST and/or GGT elevated <5 times upper normal limit) and Risk Factors and Clinical Signs of Liver Disease	4	507	185	91

31. Hamaguchi M, Kojima T, Takeda N, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. *Ann Intern Med.* 2005;143(10):722-728.

42. Suzuki A, Angulo P, Lymp J, et al. Chronological development of elevated aminotransferases in a nonalcoholic population. *Hepatol Baltim Md*. 2005;41(1):64-71. doi:10.1002/hep.20543.

64. Zelber-Sagi S, Salomone F, Yeshua H, et al. Non-high-density lipoprotein cholesterol independently predicts new onset of non-alcoholic fatty liver disease. *Liver Int Off J Int Assoc Study Liver*. 2014;34(6):e128-e135. doi:10.1111/liv.12318.

103. Zhou YJ, Li YY, Nie YQ, Huang CM, Cao CY. Natural course of nonalcoholic fatty liver disease in southern China: a prospective cohort study. *J Dig Dis.* 2012;13(3):153-160. doi:10.1111/j.1751-2980.2011.00571.x.

Metabolic health vs. Obesity for the development of NAFLD

A total of 3,045 subjects without NAFLD and diabetes at baseline were followed for four years.

Metabolic health is more important than obesity in the development of non-alcoholic fatty liver disease

Lee MK et al. Endocrinol Metab 2015

Weight gain within the normal weight range associated with NAFLD development

Cohort of 4246 nondiabetic, men without NAFLD was followed for 5 years. 622 subjects developed NAFLD.

Quartiles of weight change (kg)	Age-adjusted HR (95% CI)		Age-adjusted HR (95% Cl)		HR (95% depend	CI) in time ent model
<-0.9	0.89	(0.69-1.14)	0.90	(0.71-1.15)		
-0.9 to 0.5	1.00 (ref)		1.00 (ref)			
0.6 to 2.2	1.31	(1.05-1.64)	1.10	(0.88-1.36)		
≥2.3	1.52	(1.22-1.90)	1.26	(1.01-1.58)		

Weight gain per se increase the risk for developing NAFLD even among lean adult individuals.

Chang Y et al. GUT 2009

Incidence or cohort study

• ADVANTAGES:

- Temporal relationship clear
- Can study course of disease development
- Good for rare exposures
- Decreases potential for many biases since disease has not occurred at time of classification

• DISADVANTAGES:

- Time-consuming, expensive
- Loss to follow-up and missing data for example) drop-outs, attrition, migration
- Prohibitive for rare diseases
- Does not eliminate confounding

Prevalence of NAFLD and NASH

Williams et al. Gastroenterology 2011

Prevalence of NASH associated cirrhosis in the US (NHANES)

NHANES 1999-2002 vs. 2009-2012

Increasing frequency of NASH and NASH-cirrhosis

Kabbany et al. AJG 2017

Prevalence of NAFLD : ethnic difference

• Meta-analysis on 729 studies with 86 included

NAFLD prevalence

Prevalence of NAFLD

В

NAFLD Prevalence in Asia

Study (Asia)	Events	Total		Prop (in %)	95%-CI	Reference
Cai, 2014 (China)	984	2241		43.91	[41.84; 45.99]	26
Kim, 2012 (Korea)	1617	4023		40.19	[38.67; 41.73]	36
Cai, 2013 (China)	3906	10605	+	36.83	[35.91; 37.76]	25
Dassanayake, 2009 (Sri Lanka)	974	2985	-	32.63	[30.95; 34.34]	30
Ju, 2013 (Korea)	2553	9159		27.87	[26.96; 28.80]	34
Jeong, 2013 (Korea)	44196	161891		27.30	[27.08; 27.52]	33
Shen, 2014 (Taiwan)	1769	6511	++-	27.17	[26.09; 28.27]	41
Kim, 2014 (Korea)	45	166		27.11	[20.51; 34.54]	37
Chang, 2013 (Korea)	11652	43166	÷.	26.99	[26.58; 27.41]	27
Hong, 2012 (China)	625	2523		24.77	[23.10; 26.51]	32
Park, 2006 (Korea)	1240	5228	-+-	23.72	[22.57; 24.90]	40
Omagari, 2002 (Japan)	320	1559		20.53	[18.55; 22.62]	39
Hamaguchi, 2005 (Japan)	812	4401		18.45	[17.31; 19.63]	31
Chen, 2006 (Taiwan)	372	2520		14.76	[13.40; 16.21]	28
Random effects model		256978	\Leftrightarrow	27.37	[23.29; 31.88]	
Heterogeneity: I-squared=99.2%, tau-s	quared=0.167	3, p<0.0001				

Prevalence of NAFLD

С

NAFLD Prevalence in Europe

Study (Europe)	Events	Total			Prop (in %)	95%-CI	Reference
Bellentani, 2000 (Italy)	66	133			49.62	[40.84; 58.42]	45
Kanerva, 2014 (Finland)	663	1611			41.15	[38.74; 43.60]	50
Van Der Voort, 2014 (Neth)	779	2292		+	33.99	[32.05; 35.97]	60
Volzke, 2005 (Germany)	893	3283			27.20	[25.68; 28.76]	61
Armstrong, 2012 (UK)	295	1118			26.39	[23.82; 29.07]	43
Caballeria, 2010 (Spain)	198	766			25.85	[22.78; 29.10]	46
Tarnoki, 2012 (Hungary)	47	208			22.60	[17.10; 28.89]	59
Bedogni, 2005 (Italy)	135	598			22.58	[19.28; 26.14]	44
Radu, 2008 (Romania)	604	3005			20.10	[18.68; 21.58]	57
Suomela, 2015 (Finland)	246	1621	+		15.18	[13.46; 17.02]	21
Loguercio, 2001 (Italy)	84	2100	+		4.00	[3.20; 4.93]	51
Random effects model		16735		-	23.71	[16.12; 33.45]	
Heterogeneity: I-squared=98.8%, t	tau-squared=0.	6522, p<0.0	001				

Prevalence of NAFLD

E Study (North America) Total Prop (in %) 95%-CI Events Reference Williams, 2011 (US) 46.04 91 151 328 [40.55; 51.60] 683 34.85 Mohanty, 2009 (US) 238 [31.27; 38.55] 79 34.00 74 Kim, 2013 (US) 4188 12317 [33.16; 34.85] Smits, 2013 (US) 1546 4698 32.91 89 [31.56; 34.27] Otgonsuren, 2013 (US) 2510 10565 23.76 82 [22.95: 24.58] Lazo, 2011 (US) 2515 22.12 75 11371 [21.36; 22.89] Younossi, 2013 (US) 1448 6709 21.58 [20.60; 22.59] 94 Younossi, 2012 (US) 2492 11613 21.46 [20.71; 22.22] 93 21.20 87 Schneider, 2014 (US) 2051 9675 [20.39; 22.03] 20.00 85 Ruhl, 2013 (US) 2446 12232 [19.29; 20.72] Lazo, 2013 (US) 2366 12454 19.00 [18.31; 19.70] 76 521 3056 17.05 71 Foster, 2013 (US) [15.73; 18.43] Church, 2006 (US) 24 218 11.01 68 [7.18: 15.94] 24.13 Random effects model 95919 [19.73; 29.15] Heterogeneity: I-squared=99.2%, tau-squared=0.2194, p<0.0001

NAFLD Prevalence in North America

Population vs. Sample

Population-based estimate NAFLD

- Discovery in a Finish bariatric surgery group (n=296)
- Validation in a Italian nonbariatric NASH group (n=380)
- Estimation of prevalence in the general population in Finish Diabetes study (n=2,849)

Based on: PNPLA3 genotype, insulin resistance, AST

Hyysalo et al. J Hepatol 2014

Non-obese NAFLD

How to define "Non-obese" ?

References	Country	Population (n)	Subject with BMI <25 kg/ m ² (n)	Non-obese Subjects with NAFLD	Definition of leanness/non- obese used	Prevalence of abdominal obesity in lean NAFLD	Prevalence of metabolic abnormalities in lean NAFLD
Chen et al. [4]	Taiwan	General population $(n = 3,245)$	1,444	61 (4.2 %)	$\frac{BMI < 25}{kg/m^2}$	NR	$\begin{array}{l} FPG \geq \!$
Das et al. [12]	India	General population $(n = 1,911)$	1,777	90	BMI < 25 kg/m ² WC <90 cm (male) and <80 cm (female)	-	Mean \pm SD FBG 86 \pm 25 mg/dl Mean \pm SD TG 118.2 \pm 66.3 mg/dl
Kim et al. [2]	Iceland	General population $(n = 2,495)$	941	NR	BMI < 25 kg/m ²	NR	NR
Margariti et al. [7]	Greece	NAFLD patients attending Liver clinic $(n = 162)$	19	-	BMI < 25 kg/m ²	33 %	MS 20 % diabetes 5 %
Younossi et al. [6]	US	National Health and Nutrition Examination Survey (NHANES III) (n = 11,613)	4,475	431 (7.39 %)	BMI < 25 kg/m ²	8.05 %	Diabetes 6.72 % hypercholesterolemia 62.65 %
Kim et al. [5]	Korea	Clinic based medical check-up $(n = 786)$	460	74 (16 %)	$\frac{BMI < 25}{kg/m^2}$	35 %	Hypertriglyceridemia 60.8 % IFG 8.1 %

Waist circumference in Asian: of \geq 90 cm in men and \geq 80 cm in women. Abdominal obesity WHO : > 102 cm in men and \geq 88 cm in women

Das K et al. Hepatol Int 2013

"Non-obese" = not overweight

The current WHO BMI cut-off points

<16 kg/m ²	severe underweight	
16·0–16·9 kg/m²	moderate underweight	
17·0–18·49 kg/m²	mild underweight	30–39·9 kg/m2 (obese class I),
18·5–24·9 kg/m²	normal range	35–39·9 kg/m2 (obese class II), 40 kg/m2 (obese class III)
≥25 kg/m²	overweight	The cut-off points of 23, 27.5,
25–29·9 kg/m²	preobese	32.5, and 37.5 kg/m2 (figure 2) are to be added as points for
≥30 kg/m²	obesity	public health action.

2)

WHO Expert consulation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies . Lancet 2004 ; 363 : 157 - 63

Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients

911 community subjects in Hong Kong. Intrahepatic triglycerides and liver fibrosis assessed by MR spectroscopy and fibroscan.

In non-obese (BMI <25kg/m²), prevalence of NAFLD : 19.3%, prevalence of advanced fibrosis : 2.6%

Factors associated with NAFLD in non-obese						
Factors	OR (95% CI)	p-value				
BMI	1.33 (1.11-1.59)	0.002				
Waist circumference	1.11 (1.05-1.16)	< 0.001				
HOMA-IR	1.24 (1.09-1.41)	0.001				
Ferritin	1.001 (1.00-1.001)	0.008				
PNPLA3:CC(ref) vs CG/GG	4.37 (2.45-7.81)	< 0.001				

Wei JL et al. Am J Gastroenterol 2015

Prevalence of and risk factors for NAFLD in non-obese Japanese population

A cross-sectional study was performed with 5433 subjects who received health checkups from 2011 to 2012.

Prevalence of NAFLD in non-obese (BMI <25kg/m²) : 15.2%, in lean (BMI <22kg/m²) : 6.3%

Factors associated with NAFLD in non-obese, male						
Factors	OR (95% CI)	p-value				
Body fat percentage	1.13 (1.07-1.19)	< 0.001				
Waist circumference	1.11 (1.07-1.16)	< 0.001				
DPB	1.02 (1.00-1.04)	0.013				
ALT	1.03 (1.01-1.04)	< 0.001				
Triglyceride	1.01 (1.00-1.01)	< 0.001				
Blood sugar	1.57 (1.10-2.23)	0.012				

Nishioji K et al. J Gastroenterol 2015

Association of NAFLD with metabolic syndrome according to BMI in korean

29,994 adults who underwent routine comprehensive health evaluations including USG.

Prevalence of NAFLD in non-obese (BMI <25kg/m²) : 12.6%, in obese (BMI \ge 25kg/m²) : 50.1%

Metabolic	Nc	on-obese		Obese	P for
syndrome	OR	(95% CI)	OR	. (95% CI)	interaction
High BP	1.41	(1.31-1.51)	1.05	(0.89-1.22)	0.01
IFG	2.04	(1.95-2.13)	1.37	(1.21-1.53)	<0.01
Low HDL	2.00	(1.92-2.08)	1.40	(1.26-1.55)	< 0.01
High TG	3.36	(3.24-3.47)	1.97	(1.76-2.17)	< 0.01
Insulin resistance	1.96	(1.82-2.11)	1.66	(1.38-1.95)	0.40

The association between NAFLD and risk for components of MS was stronger in non-obese than in obese individuals.

Kwon YM et al. Am J Gastroenterol 2012

Contributions of total body fat, abdominal visceral and subcutaneous adipose tissue compartments to the metabolic complications of obesity

Total body fat is a major contributor to the metabolic sequelae of obesity, with specific fat depots, VAT, and DSAT also making significant contributions. It differs by sex and ethnicity.

> Smith SR et al. Metabolism 2010, Staiano AE et al. Obesity 2013, Eastwood SV et al. PloS One 2013

Genetic variation in NAFLD

 genome-wide association scan of nonsynonymous sequence variations (n = 9,229) in a population comprising Hispanic, African American and European American individuals

- Variation in PNPLA3 contributes to inter-individual differences in hepatic fat content and susceptibility to NAFLD.
- TM6SF2 activity is required for normal VLDL secretion and that impaired TM6SF2 function causally contributes to NAFLD.

Romeo S et al. Nature Genetics 2008 Kozlitina et al. Nature Genetics 2014

NAFLD as a risk factor of DM

 a prospective cohort study on the 25,232 Korean men without type 2 DM for 5 years. Incidence rate of type 2 DM was compared according to the degree of NAFLD (normal, mild, and moderate to severe),

		Incidence	Incidence density	Hazan	Hazard ratios (95% Confidence Interval)			
	Person-year	cases	(per 1,000 person-year)	Unadjusted	Model 1	Model 2		
NAFLD								
Normal	61,936.4	1,146	18.5	1.00 (reference)	1.00 (reference)	1.00 (reference)		
Mild	28,942.3	758	26.2	1.42 (1.30-1.56)	1.30 (1.04-1.62)	1.09 (0.81-1.48)		
Moderate to severe P for trend	4,291.6	204	47.5	2.58 (2.22-2.99) <0.001	1.64 (1.06-2.53) <0.001	1.73 (1.00-3.01) <0.001		

- Well-designed cohort study, time-dependent analysis
- \rightarrow Strong temporal relation
- Dose-dependent association

Park SK et al. Hepatology 2013

Type III error

 The causes of difference Interindividual variation within a population Rate difference between populations Impact of NAFLD on development of MS 60-70 % prevalence 10-20 % prevalence of NAFLD in a of NAFLD in a population population

Where are NAFLD patients?

EASL-EASD-EASO Clinical Practice Guideline for the management of NAFLD

→ Recommended

Metabolic risk factors present (any component of MS) : USG/Liver enzyme

In practice Not done

- Lack of knowledge
- No treatment drug
- They just need to lose weight

The diagnosis and management of NAFLD: Practice guideline by the AGA/AASLD/ACG → Not recommended

Potential solutions

- New guidelines AASLD/National
- → Closer working with primary care and diabetologists
- New diagnostic and treatment modality

Natural history- Which patients to treat?

a retrospective analysis of 619 patients diagnosed with NAFLD from 1975 through 2005 at medical centers in the United States, Europe, and Thailand over a median follow-up period of 12.6 years

	Hazard ratio	95% CI of HR	P value
Model 1			
Fibrosis, stage 0	1 (reference)		
Fibrosis, stage 1	2.07	1.40-3.08	<.001
Fibrosis, stage 2	3.02	2.0-4.56	<.001
Fibrosis, stage 3	3.97	2.50-6.30	<.001
Fibrosis, stage 4	11.97	6.47-22.12	<.001
Outco	me		Number
Death or OLT			(n = 193)
Cardiovascular dis	ease		74 (38.3%)
Nonliver cancer			36 (18.7%)
Cirrhosis complica	tions		15 (7.8%)

Fibrosis stage, but no other histologic features of steatohepatitis, were associated independently with long-term overall mortality. Liver related complication or HCC was less than 20%.

NAFLD and Mortality

Systematic literature review on NAFLD cohort on 17,000 patient years

Cause of Death 1. CVD, 2. Non-liver malignancy, 3. Liver-related causes

Dulai et al. Hepatology 2017

NAFLD and CV Mortality

USA, NHANES III (n=11,154), Graded by NFS

NAFLD fibrosis score		Age, Sex-adjusted	Multivariable-adjusted
	n	Hazard ratio (95% CI)	Hazard ratio (95% CI)
Mortality from all cause	778		
No	290	1	1
Intermediate	389	1.30 (1.00-1.70)	1.26 (0.98-1.64)
Advanced	99	2.17 (1.40-3.36)	1.69 (1.09-2.63)
Cardiovascular disease	291		
No	88	1	1
Intermediate	162	2.01 (1.34-3.00)	2.16 (1.41-3.29)
Advanced	41	3.69 (2.06-6.61)	3.46 (1.91-6.25)

Multivariable models adjusted for age, sex, race-ethnicity, education, income, diabetes, hypertension, smoking status, waist circumference, alcohol consumption, caffeine consumption, total cholesterol, high-density lipoprotein-cholesterol, transferrin saturation, and C-reactive protein.

Potential solution: which patients to treat?

1 stage of fibrosis progression over 14.3 years for patients with NAFL

Meta-analysis:

11 cohort studies including 411 patients with biopsyproven NAFLD

Singh S et al. CGH 2015

- HCC incidence (follow-up=3.2 yr)
 - NASH-LC: 12.8%
 - HCV-LC: 20.3%
- HCC diagnosis age
 - NASH-LC: 70-71 years
 - HCV-LC: 63-43 years

Yatsuji S et al. J Gastroenterol Hepatol. 2009

Prevalence of NAFLD : Role of the gross national income (GNI)

Zhu et al. Dig Dis Sci 2015

Food amount really matters..

Epidemology of NAFLD

- Are all calories the same?
 → Yes, with minor differences
- Let food be your medicine!

Hippocrates BC 460-370

Conslusion

- The prevalence of NAFLD in Korean population is 23-40%. The incidence of NAFLD is 37/1000 person-years.
- NAFLD itself and NAFLD related other metabolic diseases are increasing.
- The patients who have metabolic syndrome should be monitored for NAFLD or NASH.
- Liver biopsy can be considered in patients with elevated liver enzyme or high NFS, Fib4 score.

Once you start studying medicine, you will never get through with it. -Charles H. Mayo

Thank you for your attention

INSTITUTE FOR DIGESTIVE RESEARCH SOONCHUNHYANG UNIVERSITY HOSPITAL

NASH therapeutic targets by mechanisms and sites of activity and type of outcomes

PPAR agonist Aramchol ASK-1 inhibitors DGAT inhibitors ACC inhibitors Anti-CB1 MetAP2 inhibitors others	DPP-4-i PPAR-agonist SGLT2-i FGF-19 FGF-21 ISIS-ANGPTL3 others	OCA FXR agonist ASBT-1 FGF-19 FGF-21 others	PPAR agonist CVC Anti-JNK Anti-Ask DHA Anti-CB1 others	OCA Anti-JNK-1 Anti-ASK PPAR agonist Nox inhibitors others	Simtuzamab Anti-gal 3 Anti-CTGF Angiotensin- R-blockers Pentraxin-2 Anti-IL-17 Anti-TGF-beta		
Fatty acid synthesis	Insulin sensitivity	Bile acid synthesis	Anti- inflammatory	Anti-fibrotic Early stage	Anti-fibrotic Late stage		
Steatosis, ballooning, and inflammation Stage 1-3 fibrosis Stage 3-4 fibrosis							
Resolution o	f NASH	Reduce the progression of Improvement i	rate of fibrosis or n fibrosis	Reversal of ac Improvem	lvanced fibrosis or nent in fibrosis		

Nuclear bile acid receptor; Farnesoid X receptor (FXR)

- Expressed predominantly in liver and intestine activated by endogenous bile acid (BA)
- Regulate BA synthesis, biotransformation and excretion.
- Key role in the control of glucose and fat homeostasis
- Protective roles against bacterial overgrowth and maintenance of barrier function in the gut

Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.

Schaap, F. G. et al. Nat. Rev. Gastroenterol. Hepatol. 2014 Anna LF et al. J of Hepatology 2011