Inflammation and oxidative stress in diabetic kidney disease

Choon Hee Chung

Department of Internal Medicine Wonju College of Medicine

Research Center for the Drug Development of Metabolic Disorders based on Natural Resources

Yonsei Institute of Convergence Science (ICONS)

Yonsei University, Korea

Epidemiology

- One of the major complications associated with type 2 diabetes and a leading cause of end stage renal disease.
- Mortality in type 1 diabetes with normoalbuminuria: 2 times greater than normal controls
- Mortality in type 1 diabetes with overt proteinuria: 20-40 times greater than normal controls

Risk factors of DN

- Hypertension
- HbA1C > 8%
- Obesity
- Smoking
- Family history: diabetic nephropathy, dyslipidemia, hypertension
- Duration of diabetes > 5 years

Pathogenesis

Therapeutic strategies

- 1. Glycemic control: Complete reversal of renal lesion in type 1 DM patients after pancreas transplantation
- 2. BP control: ACE inhibitors, ARB, renin inhibitor: aliskiren, aldosterone blockers: spironolactone and eplerenone
- 3. Aldose reductase inhibitors: fidarestat (Sung JK, et al, YMJ, 2010)
- 4. AGE inhibitors: aminoguanidine
- 5. PKC inhibitors: ruboxistaurin (improve retinopathy and macular edema; in case of nephropathy, effective in vitro but not effective in vivo)
- 6. VEGF inhibitors: pegaptanib, ranizumab, bevacizumab; effective in diabetic eye

7. Serotonin 2A receptor antagonist: sarpogrelate hydrochloride

Lee ES et al. PLoS One. 2017 Jun 22;12(6):e0179221.

Lee ES et al. PLoS One. 2017 Jun 22;12(6):e0179221.

8. MCP-1/CCR2

- TGF- β type 1 receptor inhibitor: SB431542
- MCP-1 receptor (CCR2) antagonist: RS102895
- PI3 kinase inhibitor: LY294002
- TGF- β signaling inhibitor (ALK-5 inhibitor): EW-7197

Inflammation

• Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages.

8-1) MCP-1/CCR2 loop, inducible by TGF- β , increases podocyte motility and albumin permeability

TGF-β

Lee EY and Chung CH et al, AJP Renal 297:F85-F94, 2009

Lee EY and Chung CH et al, AJP Renal 297:F85-F94, 2009

8-2) CCR2 inhibitor (RS102895)

Original Articles

Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in *db/db* mice

¹Department of Internal Medicine, Soon Chun Hyang University Su Jin Seok¹, Cheonan Hospital, Cheonan, Korea, Eun Soo Lee², ²Department of Internal Medicine, Yonsei University Wonju College Geun Tae Kim¹, of Medicine, Wonju, Korea, ³Pathology, Soon Chun Hyang University Cheonan Hospital, Miri Hyun¹, Cheonan, Korea and Ji-Hye Lee³, ⁴Division of Nephrology/Hypertension, Northwestern University, Sheldon Chen4, Chicago, Illinois, USA Ran Choi², Hong Min Kim², Eun Young Lee1

and Choon Hee Chung²

Correspondence and offprint requests to: Eun Young Lee; E-mail: eylee@sch.ac.kr

CCR2 inhibitor has anti-inflammatory effect on diabetic nephropathy

FIGURE 10. The effect of CCR2 blockade on renal macrophage accumulation and inflammatory cytokines.

Seok SJ et al., Nephrol Dial Transplant (2013) 28:1700-1710

8-3) EW-7197 (ALK-5 inhibitor)

Fig 1. Urinary albumin/creatinine (ACR) ratios were monitored throughout experimental period (A). Kidney weight in all experimental groups (B). Each group n=6-8, *p<0.01 vs. db/m controls; #p<0.01 vs. db/db controls; †p<0.01 vs. db/db+EW5 mg/kg/day

Unpublished data

EW-7197 down-regulates fibrotic mediators and infl ammatory markers in diabetic kidneys

Fig 6. Protein expression related fibrosis and inflammation. Each group n=5, *p<0.05 vs. db/m controls; #p<0.05 vs. db/db controls, †p<0.05 vs. db/db+EW5 mg/kg/day.

8-4) TNF- α induced MCP-1 via PI3 kinase may aggravate diabetic nephropathy

Chung CH et al, Nephron Extra. 2015 Feb 4;5(1):1-18

Chung CH et al, Nephron Extra. 2015 Feb 4;5(1):1-18

Nephron Extra 2015;5:1–18

9. Peroxisome proliferator-activated receptors (PPARs)

 It is generally known that peroxisome proliferator-activated receptors (PPARs) heterodimerize with the retinoid X-receptor (RXR) and bind to a specific DNA sequence [a sequence termed peroxisome proliferators response element (PPRE), that is found in a variety of genes involved in lipid and carbohydrate metabolism, inflammation, and cell proliferation and differentiation].

9-1) Thiazolidinediones: 24hrs urine protein

Protein (mg/day)	22nd	30th	40th	50th
Control LETO	12.50±3.6	9.38±0.73	12.70±5.18*	12.56±16.56*
Control OLETF	19.23±5.53	30.16±21.35	108.26±75.54	108.37±28.09
Pioglitazone	17.44±8.29	24.84±12.93	29.98±11.74*	63.15±24.57*
Rosiglitazone	16.86±5.29	21.34±9.39	27.78±13.93*	56.08±38.14*

Data express mean \pm SD *: *p*<0.05 compared with control OLETF

Lee MY and Chung CH et al, YMJ 2007

9-2) PPAR-delta

PPAR-δ agonist: GW610742

Fig. 4. Nephrin mRNA and protein expression.

Lee EY, Kim GT, Hyun M, Kim S, Seok S, Choi R, Lee MY, Chung CH. Nephrol Dial Transplant. 2012 Nov;27(11):4069-79.

Fig. 5. Renal CCL2 expression and macrophage accumulation

Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal. 2016 Oct 20;25(12):657-684.

10. Antioxidants

- Vitamin C & E: decrease ROS, but does not prevent or improve microvascular complications in clinical studies
- ACE inhibitors, ARBs, statins
- α-lipoic acid: Thioctacid[®]
- NADPH oxidase inhibitor: apocynin
- Taurine, oleanolic acid, ferulic acid, curcumin, dibenzoylmethane (DBM), dehydrozingerone (DHZ)

1) Apocynin

Changes in 24 hrs urine ACR and protein levels

	Albumin-creatinine ratio (mg/mgCr)		Protein-creatinine ratio (mg/mgCr)		
	25wk	50wk	25wk	50wk	
LETO	0.004 ± 0.001	$0.014 \pm 0.025^{\dagger}$	0.10 ± 0.03	$0.07 \pm 0.06^{\dagger}$	
OLETF	0.093 ± 0.091	2.519±3.311	$0.37 {\pm} 0.28$	3.15±4.30	
OLETF+Apo	$0.189 \pm 0.204^{*}$	$0.285 \pm 0.245^{\dagger}$	0.40 ± 0.24	0.67±0.48 [†]	
The values are mean ±S.D. *;p<0.01 vs. LETO group, †;p<0.05 vs. OLETF group, ACR;					

albumin-creatinine ratio

24hrs urine 8-OHdG & MDA at 50 weeks

Nam SM and Chung CH et al, DRCP 2009

2) Ferulic acid

Table 2. Changes of 24 h urinary albumin (mg/day) and ACR (mg/mgCr)

	24 h urinary albumin (mg/day)			
	25 week	37 week	45 week	
CON	1.05 ± 0.57	1.92 ± 1.08	0.85 ± 0.40	
DM	12.35 ± 6.97*	24.11 ± 5.98*	26.76 ± 9.46*	
DM + FA	$11.98 \pm 12.35^{*}$	$21.14 \pm 14.15^{*}$	$16.39 \pm 9.69^{*,\dagger}$	
	ACR (mg/mgCr)			
CON	0.09 ± 0.05	0.13 ± 0.07	0.07 ± 0.04	
DM	0.92 ± 0.59*	1.79 ± 0.66*	2.51 ± 1.04*	
DM + FA	$0.88 \pm 0.67^{*}$	$1.64 \pm 1.04^{*}$	$1.49 \pm 0.90^{\star,\dagger}$	

CON, control; DM, diabetes; FA, ferulic acid; ACR, albumin creatinine ratio. The values are mean \pm S.D. *P < 0.05 compared with CON, [†]P < 0.05 compared with DM.

Choi R et al, Exp Mol Med. 2011 Dec 31;43(12):676-83

Figure 2. Changes of 24 h urinary malondialdehyde (MDA) and monocyte chemoattractant protein-1 (MCP-1) levels.

3) Taurine

Hindawi Publishing Corporation International Journal of Endocrinology Volume 2014, Article ID 397307, 11 pages http://dx.doi.org/10.1155/2014/397307

() Hindawi

Research Article

Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model

Jang Hyun Koh,¹ Eun Soo Lee,² Miri Hyun,³ Hong Min Kim,² Yoon Jung Choi,⁴ Eun Young Lee,³ Dhananjay Yadav,² and Choon Hee Chung²

Figure 1: Changes of 24 hours urine albumin in control, OLETF and taurine treated groups

(a)

Figure 5: Effects of taurine on the expression of VEGF and nephrin in renal cortex.

FIGURE 6: Changes in 24 hours urinary MDA levels at 45 weeks of age. In the diabetic control group, MDA increased compared to the normal control group. MDA decreased in the taurine-treatment group compared to the diabetic control group. However, there was no statistical significance in this difference. MDA, malondialdehyde; LETO, normal control group; OLETF, diabetic control group; OLETF + TA, taurine-treated diabetic group.

FIGURE 7: Changes in ROS formation in podocytes among the three groups. The taurine-treated high glucose group demonstrated a significantly decreased ROS production. NC, normal glucose; HG, high glucose; HG + TA, taurine-treated high glucose. Data are expressed as mean \pm SEM. * P < 0.05 compared with NG; *P < 0.05 compared with HG.

4) Oleanolic acid

- Naturally occurring triterpenoid
 - Anti-inflammation, anti-oxidant, anti-tumor and anti-viral properties
- Hypoglycemic, hypolipidemic efficacy in diabetic rats

N-acetylcysteine

- N-acetyl cysteine comes from the amino acid L-cysteine
- Pharmacologic antioxidant
- > Protective effect on the β -cells of diabetic mouse model
- Improve endothelial function

OA & NAC repaired damaged renal structures and urinary ACR

Eun Soo Lee et al. Nephrol. Dial. Transplant. 2016 Mar;31(3):391-400

OA & NAC suppress ROS formation induced by ER stress activator

Eun Soo Lee et al. Nephrol. Dial. Transplant. 2016 Mar;31(3):391-400

Curcumin

Protective Effects of Curcumin on Renal Oxidative Stress and Lipid Metabolism in a Rat Model of Type 2 Diabetic Nephropathy. Yonsei Med J. 2016 May;57(3):664-73.

CURCUMIN

Dibenzoylmethane (DBM)

Dehydrozingerone (DHZ)

- Hydrophobic polyphenol derived from the rhizome of the herb *Curcuma longa*
- anti-inflammatory, anti-tumor, antidiabetic, neuroprotective, cell cycle regulation
- anti-oxidant
- anti-tumor
- inhibition of lipid peroxidation activity

Diabenzoylmethane

(x20K)

Unpublished data

-

Dehydrozingerone

Mouse podocytes

Unpublished data

Curcumin 8

The Importance of ROS Regulation

Fig. 1 Excess ROS leads to apoptosis and diabetic nephropathy. Model demonstrating the different causes of ROS formation that result in the induction of inflammation by proinflammatory genes, leukocyte infiltration, and aggravation of ROS formation. Ultimately, this may lead to apoptosis and kidney dysfunction. We postulate that in humans induction of cytoprotective proteins, such as HO-1, SOD or catalase, will restore this ROSmediated skewing of the redox balance by generating products that protect against oxidative stress, and/or inflammation and apoptosis, or a combination

Wagener FA et al., Apoptosis 14(12):1451-8

Discovery of new therapeutic target for DKD

Activation of NADPH oxidase isoforms

Physiological Reviews Published 1 January 2007 Vol. 87 no. 1, 245-313

Figure 2 Locations of NOX proteins in the body

Tissues reported to express NOX homologues throughout the human body are indicated. See text for further details.

Clinical Science (2006) 111, 1-20

NOX inhibitors

- Small molecule inhibitors: Diphenylene iodonium (DPI), Apopcynin, ML171
- Triazolo purimidine derivatives: VAS2870, VAS3947
- Pyrazolopyridine derivatives: GKT136901, GKT137831

Nox5 is expressed in human diabetic kidney biopsies and podocytes

J Am Soc Nephrol 25: 784–797, 2014

On going study

ACT, NOX1/4 inhibitor APO, Apocynin

Take Home Message

In the pathogenesis of DKD, inflammation and oxidative stress are very important. We suggest that the blockade of MCP-1 and ROS in the progression of DKD would be important therapeutic strategies.

Oxidative stress and inflammation in DKD

Acknowledgements

Yonsei Univ. Wonju Coll. of Med. Current members

PhD course

- Hui Jo Lee
- Kyung Bong Ha
- Hong Min Kim

Postdoctoral research fellows

- Weerapon Sangartit (Thailand)
- Sun Hee Lee
- Eun Soo Lee

Collaborators

- Eun Young Lee (SoonChunHyang Univ.)
- Hyun Soo Kim (Korea University)
- Veerapol and Upa Kukongviriyapan (Khon Kaen Univ., Thailand)

Research Center for the Drug Development of Metabolic Disorders based on Natural Resources of Yonsei Institute of Convergence Science (ICONS)

Past members

Master

- Ran Choi
- Joong Kyung Sung, MD
- Soo Min Nam, MD

MD, PhD

- Ji Hye Huh
- Jang Hyun Koh
- Mi Young Lee
- Myung Sook Shim

Scholar

- Kampeebhorn Boonloh (Thailand)
- Postdoctoral fellows
- Mi Hye Kwon
- Dhananjay Yadav (India)
- Jarinyaporn Naowaboot (Thailand)
- Bo Hwan Kim

Mentor

Kap Bum Huh

50 Years of Challenge, Hope for Diabetes Cure KDA 50TH ANNIVERSARY