Claudin-11 (*CLDN11*) is a new kid to regulate the vascular smooth muscle cell plasticity

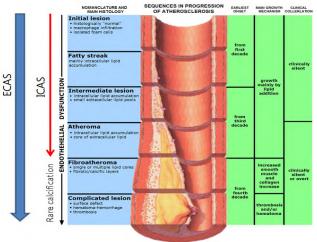
김형석

(전남의대 법의학교실)

Conflict of interest disclosure

None

Committee of Scientific Affairs

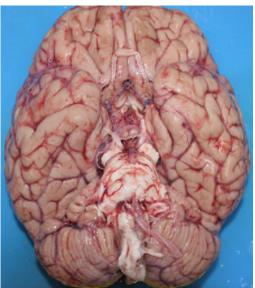


Committee of Scientific Affairs

Part I. Comparison of gene expression profiles of human cerebral and coronary arteries to identify novel genes related to vascular diseases

Part II. CLDN11 Expression in Vascular Smooth Muscle Cell and role for Cardiovascular Disease

- 죽상동맥경화증은 침범하는 혈관에 따라 발생연령, 빈도, 그리고 복합판(complicate plaque)
 까지의 진행양상 등이 극명이 다름
- 소위 발병장소에 따른 조절인자 있을 것으로 추정
- 두개강외 동맥경화증 (extra-cerebral atherosclerosis, ECAS)과 대뇌 동맥경화증 (intra-cerebral atherosclerosis, ICAS)은 병태생리학적으로 많은 차이를 보임



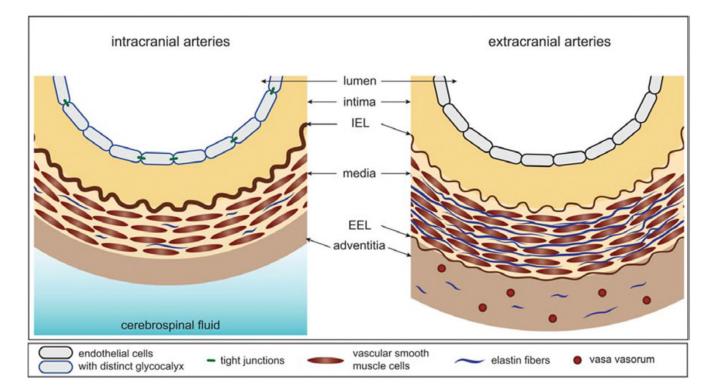
Atherosclerosis: Lesion and region

Coronary occlusion

ICA & MCA non-occlusion

Coronary occlusion

ICA & MCA occlusion


- 죽상동맥경화증
 - 혈관 연구자의 영원한 연구 주제?
- 동물 모델의 한계점
 - 병변은 심장동맥, 중대뇌동맥이 주류인데....
 - 혈관 병태생리가 다른데....
- Circulatome
 - Although many risk factors such as hyperlipidemia, diabetes, and hypertension are systemic, distinct vascular regions frequently display differential disease susceptibility or resistance...... (from 1964 to 2018..)

• Histological difference

- Intracranial arteries
 - : muscular-type

- Extracranial arteries
 - : elastin filament rich

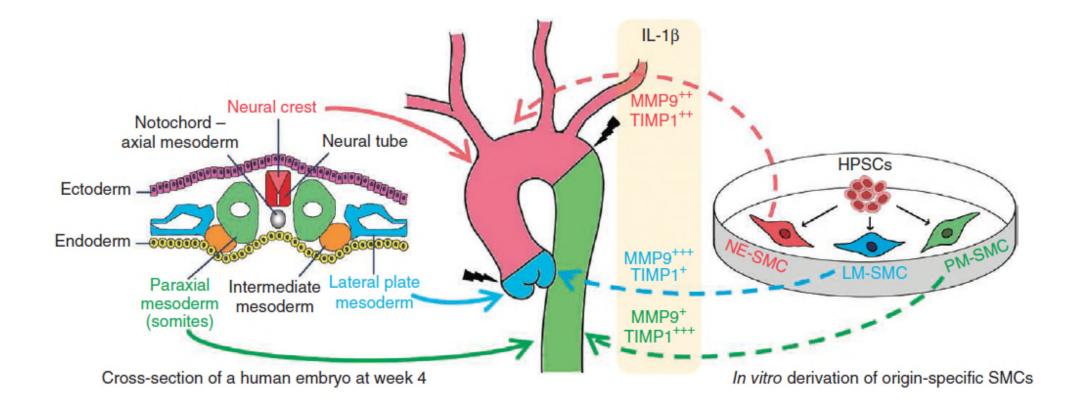
• Physiological difference

- ICA: Greater antioxidant enzyme activities than ECA

	Abdominal Aorta	Carotid Artery	Middle Cerebral Artery	Basilar Artery
No. of segments	12	15	15	12
Glutathione peroxidase, mU/mg protein	70.6±11.5	67.5±14.5	84.8±16.5	80.2±11.5
Catalase, IU/mg protein	15.4±8.5	13.6±7.5	19.1±6.5	18.4±5.9
Cu/Zn-SOD, IU/mg protein	6.8±0.9	7.2±1.0	6.5±0.9	6.6±0.9
Mn-SOD, IU/mg protein	2.0±0.4	1.6±0.4	3.2±0.6*	3.1±0.6*

Stroke. 2001;32:2472-2480.

• Embryonal difference


- Lineage tracking studies shows

vascular SMCs in different vessels have distinct embryological origins

- The diversity of SMC origins

contribute to the site-specific localization of vascular diseases

- Origin of intracranial arteries : **neuroectoderm**

Nat Biotechnol. 2012 January 15; 30: 165–73

Part I.

• The goal of this study

- Compare the gene profile of human vascular smooth muscle cells (Intracranial / extracranial)
- Identify the differentially expressed genes (DEGs) to understand vascular diseases

Material and Method

Human vessel sampling

10 autopsy cases, Vascular disease risk factor (-)

Intracranial artery – Middle cerebral artery

Extracranial artery – Left descending coronary artery

Vascular smooth muscle cells were isolated manually from each arteries

RNA extraction

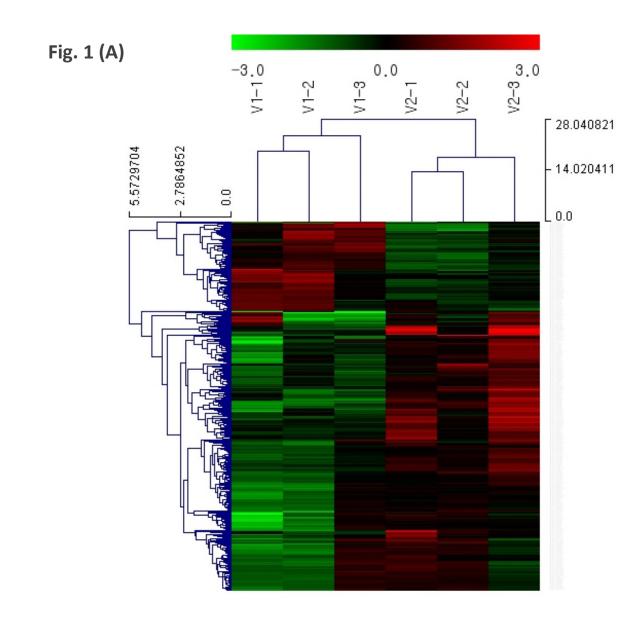
Using TRIzol[®] Reagent following the manufacturer's instructions

Checked for an RIN number to inspect RNA integration

Material and Method

• Microarray and analysis

- Each gene expression profiles were obtained and compared using the Agilent
 Human Gene Expression 4×44K v2 Microarray kit
- Fluorescently labelled cDNA was obtained from a single round of labelling using a kit in the presence of fluorescent dNTP
- Statistical analysis of mRNA microarray data was performed by Genespring GX 9.0
 Software


Material and Method

- Bioinformatic analysis
 - Gene ontolgy analysis
 - KEGG pathway analysis
 - Gene-associated gene analysis : Database for Annotation, Visualization and Integrated Discovery
- Reverse transcription polymerase chain reaction
 - 10 sets of MCA and LAD extracted from autopsy
 - Selected genes : Fivefold upregulated and P-value<0.05

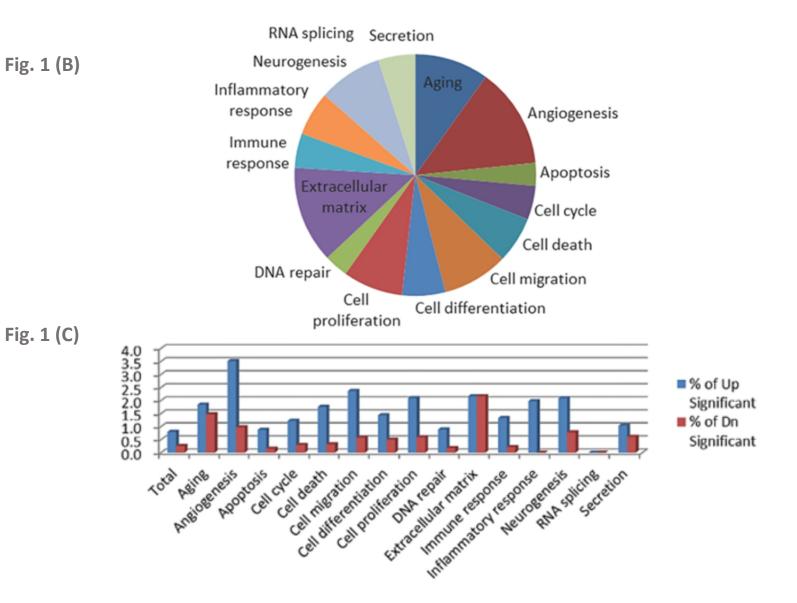
• Whole-genome mRNA expression profiling

- Approximately 34,000 genes identified
- Differentially-expressed genes were 359
 - : Upregulated 272 / Downregulated 87

(V2/V1, Fold-change > 2 or < 0.5 and p-value < 0.05)

• Gene Ontology (GO) enrichment

The percentage of 359 DEGs involved in each GO


Angiogenesis (4.5%)

Extracellular matrix (4.3%)

Cell migration (2.9%), neurogenesis (2.9%)

Cell proliferation (2.7%)

Inflammatory response (2.0%)

	GenebankID	Symbol	Fold Change	P- value
Table 1 (A)	Angiogenesis			
	NM_001647	APOD	11.494	0.000
	NM_001993	F3	6.171	0.005
	NM_000584	IL8	5.331	0.014
	NM_000104	CYP1B1	4.191	0.005
	NM_000358	TGFBI	3.367	0.003
	NM_004040	RHOB	3.108	0.000
	NM_002970	SAT1	3.082	0.000
	NM_017617	NOTCH1	2.855	0.000
	NM_001040708	HEY1	2.825	0.002
	NM_001025366	VEGFA	2.787	0.000
	NM_030817	APOLD1	2.592	0.026
	NM_002737	PRKCA	2.520	0.001
	NM_002228	JUN	2.337	0.001
	NM_002165	ID1	2.307	0.031
	NM_033238	PML	2.210	0.004
	NM_002135	NR4A1	2.173	0.033
	NM_002970	SAT1	2.110	0.000
	NM_002210	ITGAV	2.060	0.021

Table 1 (B)	GenebankID	Symbol	Fold Change	P- value
	Extracellular matrix	X		
	NM_001993	F3	6.171	0.005
	NM_004822	NTN1	5.320	0.000
	NM_133507	DCN	4.489	0.002
	NM_006486	FBLN1	4.398	0.002
	NM_001920	DCN	4.121	0.000
	NM_001996	FBLN1	3.876	0.010
	NM_182487	OLFML2A	3.846	0.007
	NM_000358	TGFBI	3.367	0.003
	NM_001025366	VEGFA	2.787	0.000
	NM_002345	LUM	2.395	0.035
	NM_006988	ADAMTS1	2.286	0.003
	NM_030761	WNT4	2.276	0.000

Table 1 (C)

Fold GenebankID Symbol **P**-value Change Cell migration NM 001647 APOD 11.494 0.000 NM 001993 F3 6.171 0.005 NM 003641 IFITM1 5.956 0.003 NM 004472 FOXD1 5.346 0.000 NM_000584 IL8 5.331 0.014 NM_004822 NTN1 5.320 0.000 NM 014331 4.319 0.045 SLC7A11 NM 004098 EMX2 4.308 0.001 NM_000104 CYP1B1 4.191 0.005 NM 005654 NR2F1 3.919 0.008 NM_006186 3.169 0.000 NR4A2 0.000 NM 002613 PDPK1 2.889 NM_017617 NOTCH1 2.855 0.000 NM 001453 FOXC1 2.820 0.001 NM_001025366 2.787 0.000 VEGFA AK056079 2.605 0.015 JAM2 NM_001679 ATP1B3 2.544 0.001 2.520 0.001 NM 002737 PRKCA NM 004972 JAK2 2.514 0.000 NM 002165 ID1 2.307 0.031 NM 002613 PDPK1 2.296 0.001 NM 016038 0.008 SBDS 2.211 NM 002135 2.173 0.033 NR4A1 NM_016951 CKLF 2.139 0.029 NM_178012 TUBB2B 2.134 0.006 NM_002206 2.122 0.001 ITGA7 NM 005704 PTPRU 2.084 0.002 NM_002210 0.021 ITGAV 2.060 NM_003641 IFITM1 2.032 0.001

• Candidate genes

- 14 upregulated genes

V2/V1, Fold-change > 5, P-value < 0.05

- 1 downregulated gene

V2/V1, Fold-change < 0.2, P-value < 0.05

Table 4

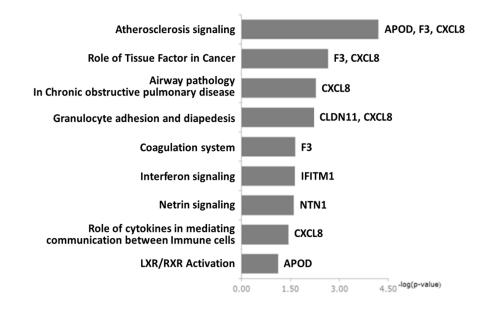
GenebankID	Symbol	Fold Change	P -value
Upregulated			
NM_001647	APOD	11.494	0.000
NM_001927	DES	9.051	0.000
NM_005602	CLDN11	8.659	0.008
NR_026943	LOC642852	6.578	0.003
NM_001993	F3	6.171	0.005
NM_000702	ATP1A2	5.977	0.003
NM_003641	IFITM1	5.956	0.003
NM_030926	ITM2C	5.355	0.014
NM_004472	FOXD1	5.346	0.000
NM_000584	IL8	5.331	0.014
NM_004822	NTN1	5.320	0.000
NM_020311	CXCR7	5.242	0.000
NM_000518	HBB	5.129	0.003
NM_002677	PMP2	5.025	0.002
Downregulated			
NR_002989	SNORA81	0.188	0.007

• Confirmation of microarray data

- 8 genes were selected to verify the analyzed microarray data
- 10 sets of MCA and LAD extracted from autopsy and analyzed by RT-PCR
- All of them were highly expressed in MCA

Fig. 3

LADI MCAL LAD2 MCA2 LAD3 MCA3 ApoD 403bp Desmin 576bp CLDN11 486bp NTN1 575bp HBB 442bp FOXD1 476bp CXCR7 527bp F3 478bp GAPDH 393bp


Table 5

Gene	Sequence	Primer size	
ApoD	CCTGCCAAGCTGGAAGTTAAGTT	403bp	
	AACAGGGTAGGGCATGGTTACAT	40000	
Desmin	ACGCGGTGAACCAGGAGTTTC	576bp	
Desition	TAGCCGCGATGGTCTCATACTGA	57000	
CLDN11	CTTCTCCCTTTCGGCTTAGTTTC	486bp	
CLONII	CCCATGAAGCCAAACTTAACAGT	40000	
NTN1	TGTGAATTCTCAAGCCCGTAGTGT	575bp	
NINI	AATAGTGTCACTGCCGTAAACCCA	575DP	
НВВ	CTGAGGAGAAGTCTGCCGTTACT	442hn	
поо	GCAAGAAAGCGAGCTTAGTGATA	442bp	
FOXD1	CTGCCCTGTCCAGTGTCGAGAACT	476hp	
FONDI	GCTGGCATTCTTCAAGACCTTTAC	476bp	
CXCR7	TTCCCTTCTCCATTATCGCTGTC	527bp	
CACK/	CAAGCATCAAGACCCGAAGCTAC	5270p	
F3	GTGTGACCTCACCGACGAGATTG	479hn	
	CCCTTTCTCCTGGCCCATACACT	478bp	
GAPDH	GGGAAACTGTGGCGTGATG	393bp	
	CCTGTTGCTGTAGCCAAATTCGT	00000	

• Ingenuity pathway analysis (IPA)

- To identify potential pathogenic pathways
- The top canonical pathway : atherosclerosis signaling

Related genes : APOD, F3, CXCL8

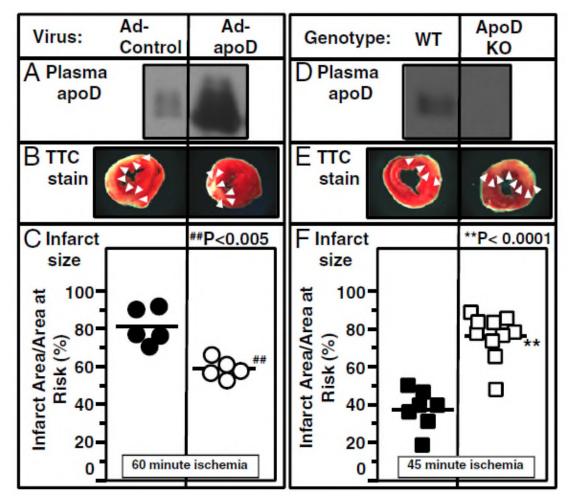
Gene-associated disease analysis

- Used DAVID to identify DEGs-related disease using 14 upregulated genes
- Type 2 diabetes and Hypertension were the most relevant

APOD, F3 and DES are associated with type 2 DM

ATP1A2 and HBB are associated with both disease

Table 6.

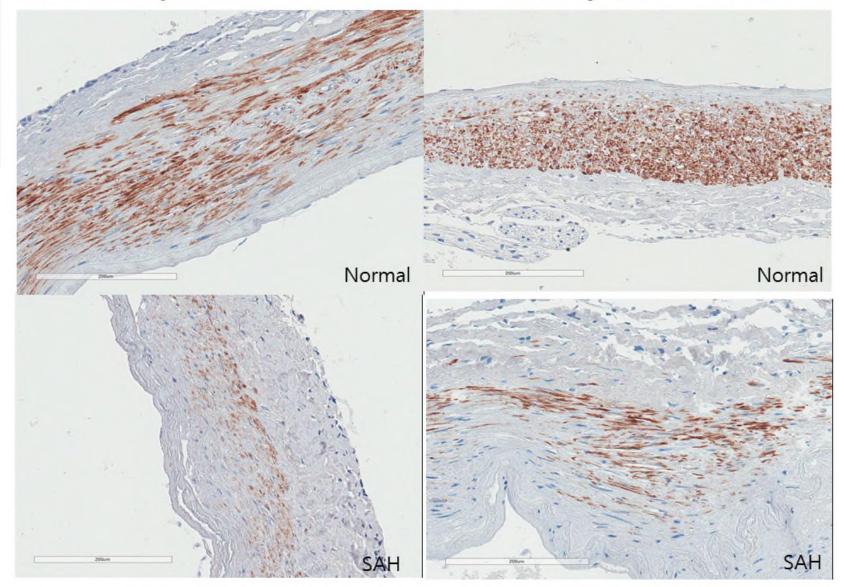

Term		Gene count	P-value	Fold enrichment
Hypertension		3	8.2E-2	5.5
Type 2 Diabetes I edema I rosiglitazone		5	5.1E-2	3.0
OFFICIAL_GENE_SYMBOL GENE NA		ME		
Type 2 Diabetes related				
ATP1A2	ATPase Na+/K+ transporting subunit alpha 2			
APOD	Apolipoprotein D			
F3	Coagulation factor III, tissue factor			
DES	Desmin			
HBB	Hemoglobin subunit beta			
Hypetenesion related				
ATP1A2	ATPase Na+/K+ transporting subunit alpha 2			
HBB	Hemoglobin subunit beta			
ITM2C	Integral membrane protein 2C			

Discussion

• Apolipoprotein D (APOD)

- A component of HDL that no marked similarity to other apolipoprotein sequences
- Intracellular accumulation selectively inhibit PDGF-BB-induced VSMC proliferation
- Cardioprotective as an antioxidant

Discussion


Proc Natl Acad Sci U S A. 2013;110(42):17023-8.

Discussion

• Desmin (DES)

- A key subunit of the intermediate filament in cardiac and skeletal muscles
 - Maintenance of structural and mechanical integrity of the contractile apparatus in muscle tissues
- In vSMC, especially intracranial
 - Control cerebral arteries: strongly immunostained
 - vSMCs in both non-ruptured and ruptured aneurysmal walls: no staining for desmin

Desmin expression in middle cerebral artery (CNU Cases)

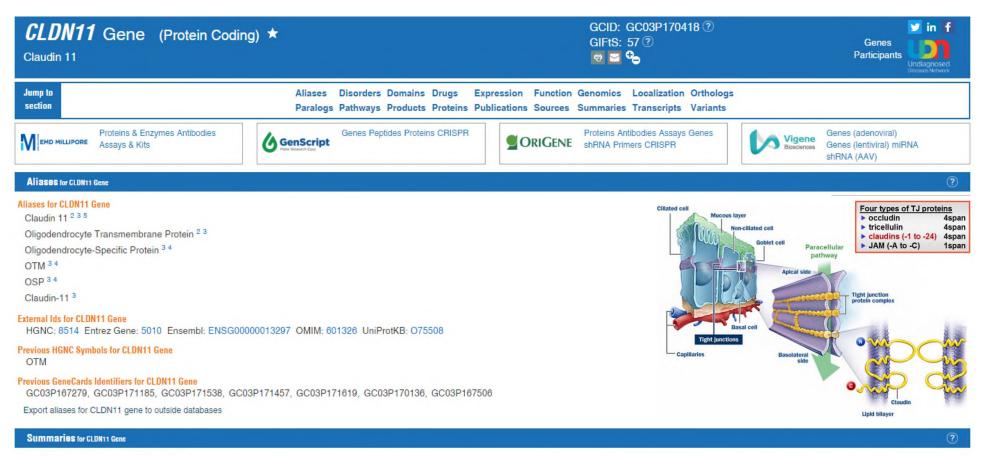
Conclusion

This dataset provides a resource for understanding the different arterial regulation and disease susceptibility in IA and EA, especially atherosclerosis and diabetes, and may also aid in the development of diagnostic and therapeutic markers

Part II.

CLDN11 Expression in Vascular Smooth Muscle Cell and role for Cardiovascular Disease

5 Fold_increased in ICA


	· · · · · ·			
Fold	Atherosclerosis Signaling			APOD, F3, CXCL8
11.494	-			
9.051	Role of Tissue Factor in Cancer		F3, CXCL8	
8.659	Role of Hissue Pactor in Cancer			
6.578				
6.171	Airway Pathology		CXCL8	
5.977	in Chronic Obstructive Pulmonary Disease		-	
5.956	Granulocyte Adhesion and Diapedesis		CLDN11, CXCL8	
5.355	-			
5.346	Coagulation System	F3		
5.331	Coagulation System	13		
5.320	-			
5.242	Interferon Signaling	IFITI	M1	
5.129 5.025	-			
5.025	Netrin Signaling	NTN	11	
	Role of Cytokines in Mediating	CXCL	-8	
	Communication between Immune Cells			
		4000		
	LXR/RXR Activation	APOD		
	- 0.0	00 1.50	3.00	4.50 -log(p-value)
	0.1	1.00	0.00	7.00

[Canonical pathway]

[Networks]

Gene APOD DES CLDN11 LOC642852 F3 ATP1A2 IFITM1 ITM2C FOXD1 IL8 NTN1 CXCR7 HBB PMP2

Mole	ecules in Network	Focus molecules	Top Diseases and Functions
ACK	R3, APOD, ATP1A2, CXCL8, DES, F3, FOXD1, HBB, IFITM1, NTN1, PMP2		Cancer, Organismal Injury and Abnormalities, Reproductive Syste m Disease
CLDI	N11, ITM2C		Cell-To-Cell Signaling and Interaction, Cellular Assembly and Org anization, Cellular Function and Maintenance

Entrez Gene Summary for CLDN11 Gene 🕑

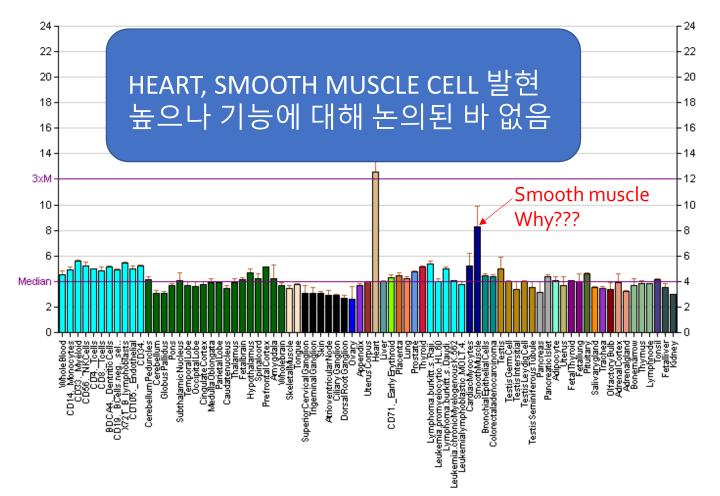
This gene encodes a member of the claudin family. <u>Claudins are integral membrane proteins and components of tight junction strands</u>. Tight junction strands serve as a physical barrier to prevent solutes and water from passing freely through the paracellular space between epithelial or endothelial cell sheets, and also play critical roles in maintaining cell polarity and signal transductions. The protein encoded by this gene is a major component of central nervous system (CNS) myelin and plays an important role in regulating proliferation and migration of oligodendrocytes. Mouse studies showed that the gene deficiency results in deafness and loss of the Sertoli cell epithelial phenotype in the testis. This protein is a tight junction protein at the human blood-testis barrier (BTB), and the BTB disruption is related to a dysfunction of this gene. Alternatively spliced transcript variants encoding different isoforms have been identified.[provided by RefSeq, Aug 2010]

GeneCards Summary for CLDN11 Gene

CLDN11 (Claudin 11) is a Protein Coding gene. Diseases associated with CLDN11 include Appendiceal Neoplasm and Multiple Sclerosis, Disease Progression, Modifier Of, Among its related pathways are Blood-Brain Barrier and Immune Cell Transmigration: VCAM-1/CD106 Signaling Pathways and Blood-Brain Barrier Pathway: Anatomy, GO annotations related to this gene include *identical protein binding* and *structural molecule activity*.

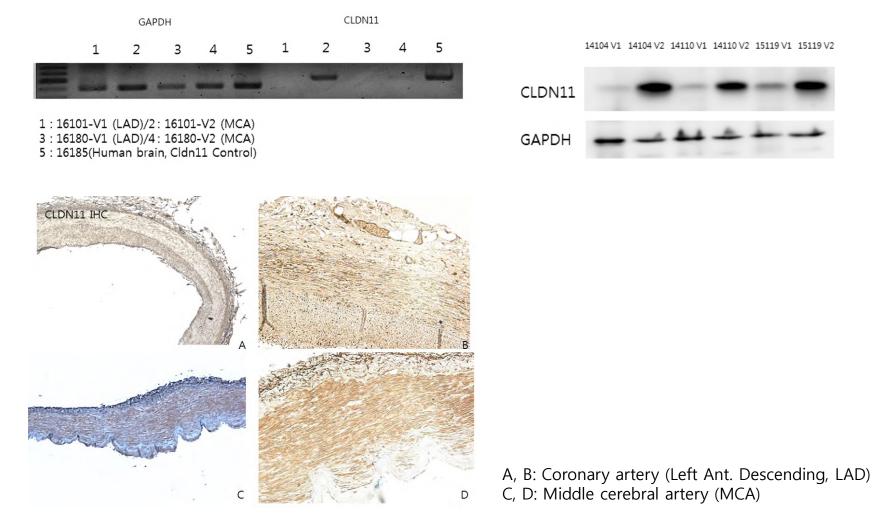
UniProtKB/Swiss-Prot for CLDN11 Gene CLD11_HUMAN,075508

Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity.

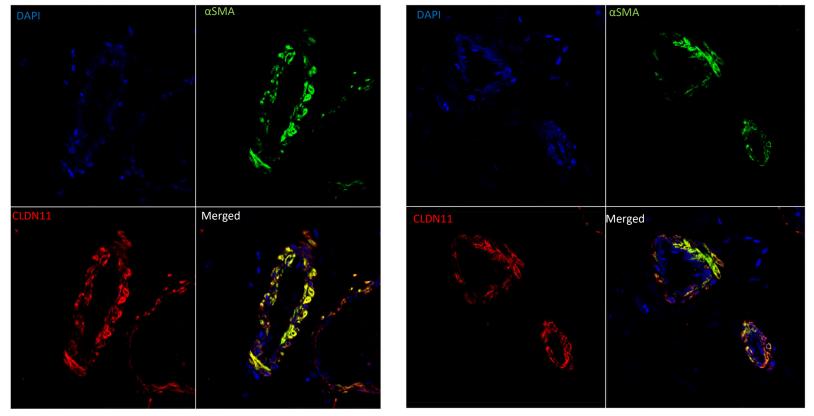

Gene Wiki entry for CLDN11 Gene 🕑

Biological Roles of CLDN11 in cancer

- Potential tumor suppressor gene located at chromosome 3 (3q26.2)
- Silencing of *CLDN11* expression
 - Associated with increased invasiveness in various cancers
 - Poor outcome of patients with meningiomas was associated with reduced CLDN11 expression
 - Promoter hypermethylation in gastric cancer and malignant melanoma

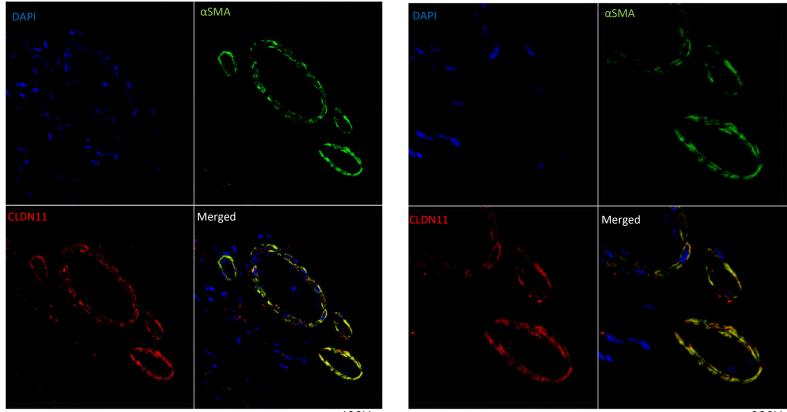

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541974/

CLDN11 RNA Expression Profile in Human tissues

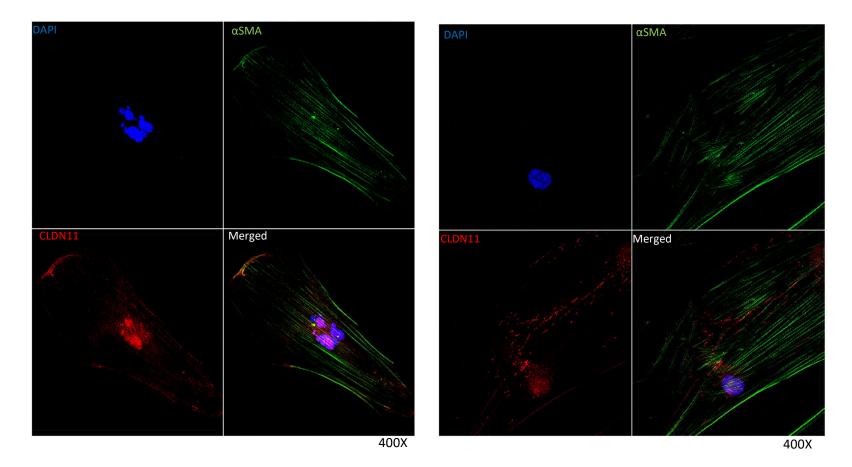


Ref: http://biogps.org/#goto=genereport&id=5010

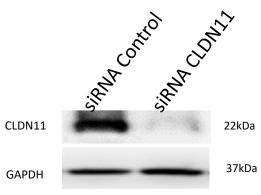
CLDN11 Expression in Human Vasculature

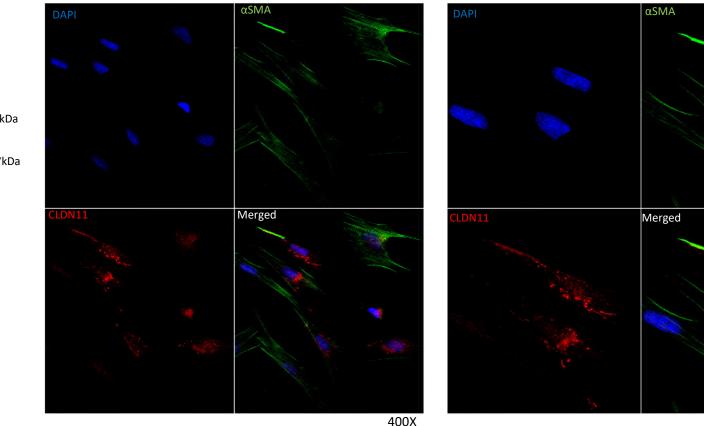

CLDN11 Expression in Human Coronary artery

CLDN11 Expression in Human Middle Cerebral Artery

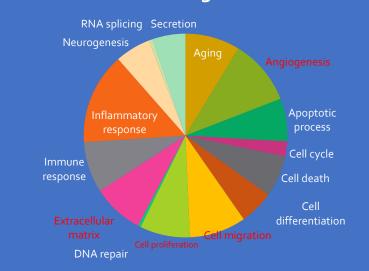


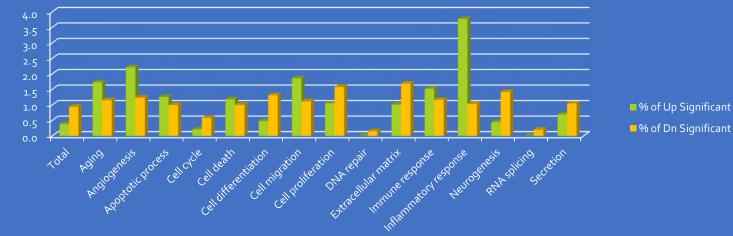
400X


800X

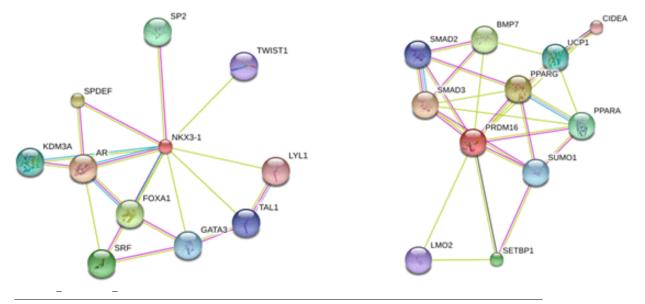


CLDN11 expression in human vascular smooth muscle cell line

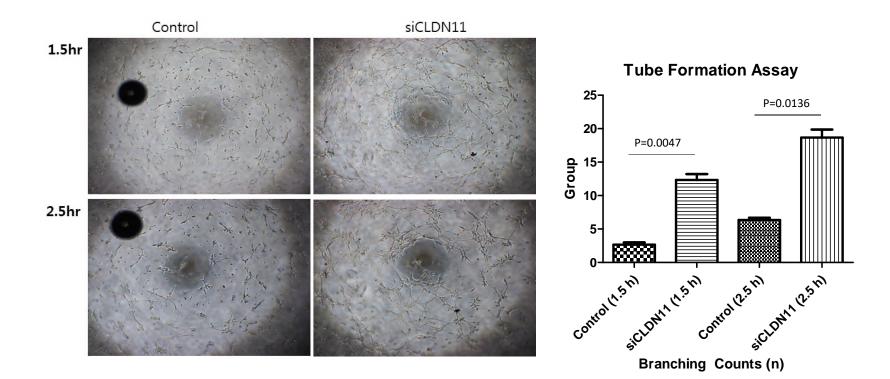

CLDN11 re-distribution in vSMC following siRNA CLDN11 treatment

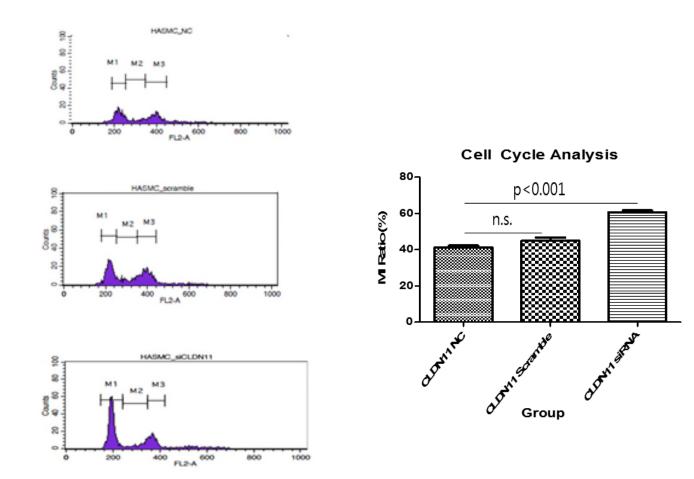


400X

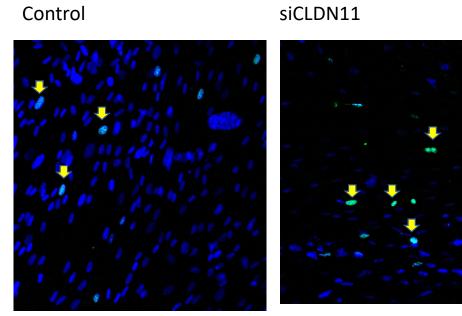

Gene Ontology Analysis Report % of Total Significant

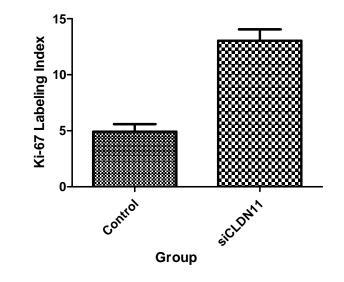
		Cell proliferation (15)
CXCL8(IL8 receptor) SOX17 EGR3 CYP1B1 SCG2	Angiogenesis (11)	ITGB2 CR2 CCKBR CXCL1 APOA1 DOCK2 IL6 KRT2 WNT1 TLR4 DMBT1 IL7R CHRM5 IL6 NKX3-1
HE	IFAIP2 NRXN1 EY1 PTGS2	
PRDM16DRD2CSF3CCKITGB2HOXA11CSF3WNT1APOA1CALCREDARMYT1LIL6DMBT1CECR2GSX2CRB1IL1B	SPRR2A GNGT1	NCAM1 GALR2 IL6 NOG MNX1 CR2 BCL11B KLRK1
	receptor) SOX17 EGR3 CYP1B1 SCG2 TN SCG2 TN HE CER3 CCK ITGB2 HOXA11 CSF3 CCK ITGB2 HOXA11 CSF3 WNT1 APOA1 CALCR EDAR MYT1L IL6 DMBT1 CECR2 GSX2	receptor) SOX17 EGR3 CYP1B1 SCG2 Angiogenesis (11) RSPO3 TNFAIP2 RSPO3 TNFAIP2 RXN1 HEY1 RXN1 PTGS2 CCEI CIFEENTION (7 SOX17 SSC94 SOX17 CSF3 CCK SPR2A GNGT1 ITGB2 HOXA11 ADRB1 WNT10A CSF3 WNT1 DPYSL5 TREM2 APOA1 CALCR ADIPOQ FAT3 EDAR MYT1L RUNX3 FLNA L6 DMBT1 ICAM1 CCL21 CECR2 GSX2 LAMB3 BMP3


PPI (Protein-protein interaction) analysis for up-regulated gene cluster following siRNA-CLDN11 treatment


C=5; O=2; E=0.02; R=130.78; PValue=9.07e-05; FDR=7.11e-02

userid	Gene Symbol	Gene Name	Entrez Gene
A_33_P3239347	NKX3-1	NK3 homeobox 1	4824
A_33_P3348872	PRDM16	PR/SET domain 16	63976


Functional Evaluation: Tube Formation

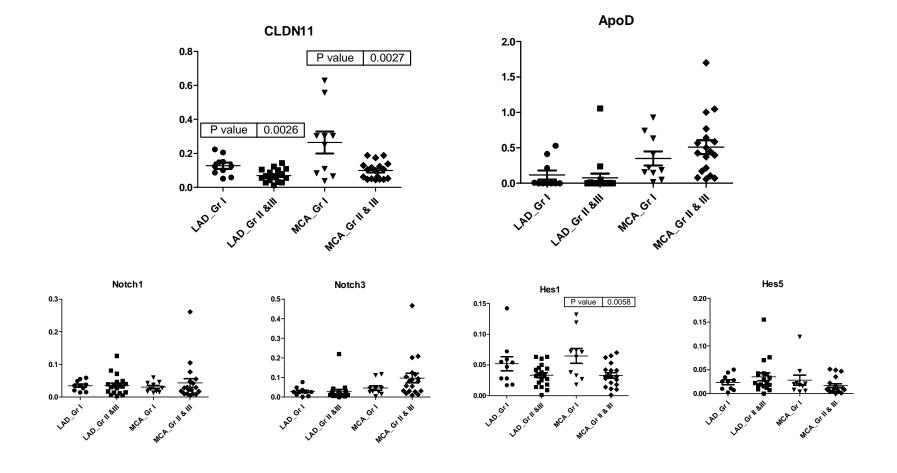

Functional Evaluation: Cell cycle analysis

Ki-67 Labeling Index following siCLDN11 treatment

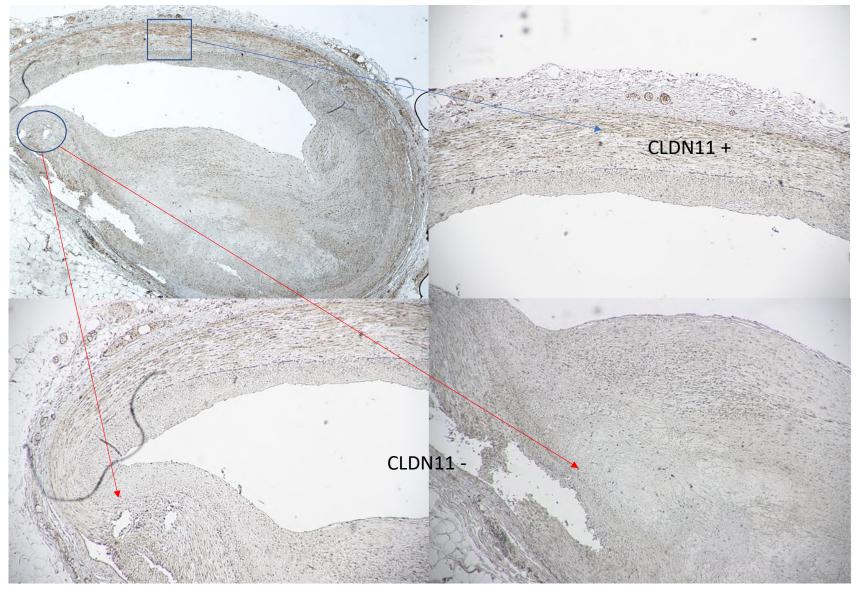
siCLDN11

Caspase-3 expression following siRNA-CLDN11 in vSMC

c-caspase 3

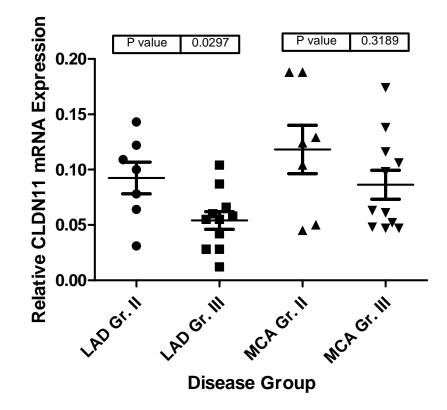

Group

The Role of CLDN11 in Atherosclerosis


- Modified American Heart Association (AHA) classification of atherosclerosis based on morphological description

	Description	Thrombosis		
Non-atherosclerotic l	esions			
Intimal thickening	The normal accumulation of Smooth Muscle Cells (SMCs) in the intima in the absence of lipid or macrophage foam cells	Absent		
Intimal xanthoma, or "fatty streak"	Luminal accumulation of foam cells without a necrotic core or fibrous cap. Based on animal and Absent Group human data, such lesions usually regress.			
Progressive atherosc	lerotic lesions			
Pathological intimal thickening	SMCs in a proteoglycan-rich matrix with areas of extracellular lipid accumulation without necrosis	Absent		
Erosion	Luminal thrombosis; plaque same as above	Thrombus mostly mural and infrequently occlusive		
Fibrous cap atheroma	Well-formed necrotic core with an overlying fibrous cap	Group II		
Erosion	Luminal thrombosis; plaque same as above; no communication of thrombus with necrotic core	Thrombus mostly mural and infrequently occlusive		
Thin fibrous cap atheroma	A thin fibrous cap infiltrated by macrophages and lymphocytes with rare SMCs and an underlying necrotic core	Absent; may contain intraplaque hemorrhage/fibrin		
Plaque rupture	Fibroatheroma with cap disruption; luminal thrombus communicates with the underlying necrotic core	Thrombus usually occlusive		
Calcified nodule	Eruptive nodular calcification with underlying fibrocalcific plaque	Paremibus usgally ponocclusive		
Fibrocalcific plaque	Collagen-rich plaque with significant stenosis usually contains large areas of calcification with few inflammatory cells; a necrotic core may be present.	bsent		

Target gene analysis according to atherosclerosis grade : Non-Atherosclerotic lesion vs. Progressive Atherosclerotic lesion



CLDN11 IHC in LAD with CAS

CLDN11 mRNA expression

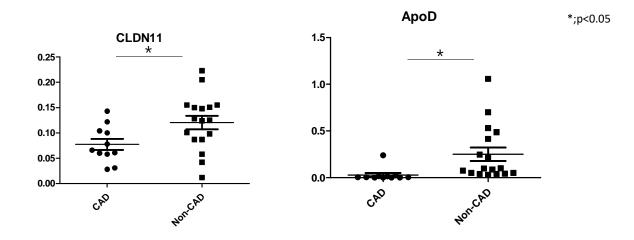

Between Non-complicated (Gr II) and complicated (Gr III) atherosclerotic lesions

Table 1. Patients List according to cause of death

Index	Age	Sex	Group	Dx
13125	62	M	Π	관상동맥경화에 의한 허혈성 심장질환
13134	56	M	I	고도의 두부손상
13135	60	M	Ш	고도의 관상동맥경화에 의한 허혈성 심장질환
13140	66	F	Π	엔도설판 중독
13141	54	M	Π	관상동맥경화에 의한 허혈성 심장질환
13142	32	M	Π	간질발작에 의한 사망을 먼저 고려
13143	84	F	I	폐렴
13144	51	F	Ш	고도의 관상동맥경화에 의한 허혈성 심장질환
13146	29	M	Π	중상동맥 경화증에 의한 허혈성 심장질환
13147	39	M	Π	뇌간부 손상
141	38	M	I	급성췌장염
142	55	M	Ш	뇌간압박
143	49	M	Π	약물중독
146	50	M	I	식도정맥류 파열
149	63	M	Ш	관상동맥경화에 의한 허혈성 심장질환
1410	48	F	Π	좌측경부 자절창에 의한 허혈성 심장질환
1414	30	M	Π	비외상성지주막하출혈
1422	48	F	I	고도의 흉부손상
1423	28	M	I	고도의 두부손상
1430	42	M	I	경부압박질식사 (액사)
1433	50	M	I	일산화탄소 중독
1436	57	M	I	경부압박질식사
1451	16	F	Ι	엔도설판 중독
1465	72	M	Π-Ⅲ	고도의 관상동맥경화에 의한 허혈성 심장질환
1467	59	M	Π	관상동맥경화에 의한 허혈성 심장질환
1477	57	M	Π-Ⅲ	고도의 관상동맥경화에 의한 허혈성 심장질환
14104	54	M	Π	죽상관상동맥경화에 의한 허혈성 심장질환
15119	35	M	Ш-Ш	관상동맥경화에 의한 허혈성 심장질환(심근경색)
15165	53	M	Ш-Ш	죽상관상동맥경화에 의한 허혈성 심장질환

Target gene analysis According to cause of death : Coronary a. disease (CAD) vs. Non-CAD

CLDN11 expression in human vascular smooth muscle

- Tightly regulate the vascular smooth muscle physiology
- CLDN11 might play a certain role for atherosclerosis initiation and propagation to regulate the vSMCs plasticity
- Possible for new biological marker for cardiovascular events in clinical and forensic diagnosis

감사합니다.

전남의대 법의학교실 & 신경과학교실

- Prof. 박만석, 최강호
- 김은희, 이수진,류혜원
- 이정애*,* 이보영

공동연구 & 자문

- 전남의대
 - Prof. 홍영준 (순환기내과)
 - Prof. 윤웅 (영상의학과)
- 중앙의대
 - Prof. 이홍준
- KAIST
 - Prof. 김인준
- 부산대학교
 - Prof. 신화경

경청해 주셔서 감사합니다.