Carnitine induces autophagy and restores highfat diet-induced mitochondrial dysfunction

분당서울대병원 내과 온정헌

Conflict of interest disclosure

None

Autophagy

 Autophagy plays an essential quality-control function by promoting the basal turnover of long-lived proteins, as well as by removing damaged organelles (mitophagy, ribophagy, peroxphagy, reticulophagy, lipophagy...)

Autophagy purifies the cellular pool of mitochondria

Autophagy deficiency in metabolic disease

 In high-fat diet-induced rodent models of obesity, autophagy activity is suppressed in the liver and promotes ER stress and insulin resistance.

Yang L et al. Cell Metab 2010;11:467–78 Liu HY et al. J Biol Chem 2009;284:31484–92

 In skeletal muscle, autophagy was suppressed by highfat diet and relieved by exercise

He C et al. Nature 2012;481:511–5

L-Carnitine

- Discovered in muscle tissue in 1905.
- Chemical structure determined in 1927.
- Present in all animals, in many microorganisms, and in many plants.
- Highest concentrations in heart and skeletal muscle (~3mM).
- Obtained primarily from meat or dairy products or Synthesized in human body from lysine and methionine in the liver or kidney.

L-Carnitine

Carnitine is involved in transporting fatty acids across the mitochondrial membrane.

L-Carnitine deficiency in insulin resistance

• Diabetic subjects have reduced plasma free carnitine concentrations in 6 out of 8 studies.

Design	Carnitine status (plasma free carnitine)				
Diabetic patients versus healthy volunteers (control)	Control: 35 µmol/L	[85]			
	Diabetic patients: 21 μ mol/L ($P < 0.05$ vs. control)				
Type 1 diabetic children versus control	Reduced ($P < 0.05$ vs. control)	[86]			
Type 2 diabetic women		[87]			
Without (control; $n = 18$)	Control: 53.4 µmol/L				
With retinopathy	Retinopathy: 39.0 μ mol/L ($P < 0.05$ vs. control)				
With hyperlipidemia	Hyperlipidemia: 39.6 μ mol/L ($P < 0.05$ vs. control)				
With neuropathy	Neuropathy: 40.4 μ mol/L ($P < 0.05$ vs. control)				
Type 2 diabetic patients		[88]			
Without complications (control, $n = 15$)	Control: 58.1 µmol/L				
With retinopathy $(n = 20)$	Retinopathy: 34.2 μ mol/L ($P < 0.05$ vs. control)				
With hyperlipidemia $(n = 13)$	Hyperlipidemia: 34.9 μ mol/L ($P < 0.05$ vs. control)				
With polyneuropathy $(n = 20)$	Polyneuropathy: 35.7 μ mol/L ($P < 0.05$ vs. control)				
Type 1 diabetic patients versus healthy controls	Reduced ($P < 0.05$ vs. control)	[89]			
Type 2 diabetic patients	Not different from control	[83]			
Type 1 diabetic subjects versus normal subjects (controls)	Not different from control (48.2 vs. 48.7 µmol/L)	[84]			
Diabetic children		[90]			
Without ketosis (control)	Control: 50.0 µmol/L				
With ketosis	With ketosis: 29.7 µmol/L				
With ketoacidosis	With ketoacidosis; 24.6 µmol/L				

Carnitine treatment (2-4g L-carnitine/day) improves insulin sensitivity in patients with obesity and diabetes in clinical trials

- The majority of the studies (11 out of 16) revealed an improvement of parameters of glucose tolerance.
- Suggested mechanism
 - Promoting the mitochondrial oxidation of long-chain acyl-CoAs as accumulation of long-chain acyl-CoAs and other fatty acid metabolites impairs insulin signaling.
 - Carnitine strongly reduces intramitochondrial acetyl-CoA levels resulting in a 10- to 20-fold decrease in the acetyl-CoA/CoA ratio and stimulates PDHC for glucose utilization.

— ...

Study design

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CD+ Veh															
CD+ Carnitine														Carni 100mg/k	tine ^{.g/day}
HFD+ Veh								HFD	(48 K	cal%)					
HFD+ Carnitine								HFD	(48 K	cal%)				Carni 100mg/k	tine ^{g/day}

CARNITINE TREATMENT AND GLUCOSE TOLERANCE

Carnitine treatment improves glucose tolerance - IPGTT

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

Carnitine treatment improves glucose tolerance

p < 0.05 vs. HFD+Veh

Carnitine treatment improves skeletal muscle insulin signaling

##p<0.05 vs. HFD+Veh+insulin

CARNITINE TREATMENT AND MITOCHONDRIAL DYSFUNCTION

Chow Diet x30K

Carnitine treatment removes abnormal mitochondrial in skeletal muscle

CD+Veh

CD+Car

HFD+Veh

HFD+Car

Carnitine treatment removes abnormal mitochondrial in skeletal muscle

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

Carnitine treatment recovers skeletal muscle mitochondrial dysfunction

Carnitine treatment recovers skeletal muscle mitochondrial enzyme activity

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

Carnitine treatment recovers skeletal muscle mitochondrial content

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

CARNITINE TREATMENT AND AUTOPHAGY

Marker of autophagosome formation

The conversion of LC3-I to LC3-II via phosphatidylethanolamine (PE)

conjugation

Marker of autophagic flux

Measure **p62**/SQSTM1 degradation because p62/SQSTM1 binds LC3, thus serving as a selective **substrate of autophagy**.

Carnitine activates autophagy suppressed by high-fat diet

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

Carnitine induces mitochondrial fission or fusion related genes suppressed by high-fat diet

* p < 0.05 vs. CD+Veh # p < 0.05 vs. HFD+Veh

HOW DOES CARNITINE ACTIVATE AUTOPHAGY?

12 weeks of twice daily oral ingestion in 12 males.

- 80 g of carbohydrate (Control)
- 80 g of carbohydrate containing 1.36 g L-carnitine (Carnitine).

Three most enriched pathways

- ✓ Insulin signaling
- $\checkmark\,$ peroxisome proliferator-activated receptor signaling
- ✓ fatty acid metabolism

The Journal of physiology. 2013;591:4655-66

L-Carnitine Attenuates the Development of Kidney Fibrosis in Hypertensive Rats by Upregulating PPAR- γ

Sonia Zambrano,¹ Antonio J. Blanca,¹ María V. Ruiz-Armenta,¹ José L. Miguel-Carrasco,¹ Miguel Arévalo,² Alfonso Mate,¹ and Carmen M. Vázquez¹

Am J Hypertens. 2014 Mar;27(3):460-70.

PPARγ agonists have been reported to activate autophagy in vascular smooth muscle (Molecular biology reports. 2015;42:179-86), neurons (PloS one. 2013;8:e55080), and cancer cells (Int J Biochem Cell Biol. 2009 Nov;41(11):2334-42; Exp Cell Res. 2011 Jun 10;317(10):1397-410).

Carnitine induces PPARy suppressed by high-fat diet

Carnitine treatment increases PPARy mRNA expression in palmitate-treated C2C12 myotubes

Preincubation with carnitine 2h before palmitate treatment (200 μ M for 72 h) dose-dependently increased PPAR γ mRNA expression in C2C12 myotubes.

*p < 0.05 vs control **p < 0.01 vs control

Carnitine activates autophagy through PPARy in palmitateinduced insulin resistance

*p < 0.05 vs control **p < 0.01 vs control

Summary

- High-fat diet produces malfunctioning mitochondria in skeletal muscle of mice.
- The activation of autophagy may be a novel mechanism by which carnitine treatment enhances mitochondrial function.
- The autophagy activation by carnitine occurs through **PPARy**.
- However, the molecular link between carnitine and PPARγ and how PPARγ activates autophagy in skeletal muscle require further investigations.

Acknowledgement

Jin Woo Choi, PhD

